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Sunday, June 7

1320-1330 Opening Remarks

Session 1. Identification and Control

Chairmen: L. N. Virgin, Duke University, Durham, NC and V. J. Modi,
University of British Columbia, Vancouver, British Columbia, CANADA

1330-1510

Identification of Nonlinear Systems by using Hammerstein Feedback Models
S. Hanagud and J. Zhang, Georgia Institute of Technology, Atlanta, GA

Nonlinear System Identification without Model Form Assumptions
T. J. Meyer and D. J. Mook, The State University of New York at Buffalo,
Buffalo, NY

Nonlinear Control of a Slewing Flexible Structure
R. W. Rietz and D. J. Inman, The State University of New York at Buffalo,
Buffalo, NY

I On the Optimal Control of Large Scale Mechanical Systems Subjected to
Periodic Loading
P. Joseph, R. Pandiyan, and S. C. Sinha, Auburn University, Auburn, AL

A Heuristic Approach in the Optimal Control for Some Manipulators
B. Cheshankov, University of Sophia, Sophia. BULGARIA

1510-1530 BreakI
Session 2. Analytical Methods I

I Chairmen: F. Pfeiffer, Technische Universitat Munchen, Munchen, GERMANY
and A. C. Soudack, The University of British Columbia, Vancouver, British
Columbia, CANADA

1530-1710

I The Regional-Averaging Method and its Application to Chaotic Dynamics in
Nonlinear Mathieu Systems
C. Yushu and Z. Weiyi, Tianjin University. Tianjin. CHINA

Existence and Non Existence of Periodical Solutions of the Lidnard and
Related EquationsI S. Nocilla and P. Moroni, Politecnico di Torino, Torino. ITALY

I
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The Loss of Stability of Periodic Attractors and their Transient Precursors H
L. N. Virgin, P. V. Bayly, K. D. Murphy, J. A Gottwald, and E. H. Dowell, Duke
University, Durham, NC

Z2-Singularity Theory and 1/2 Subharmonic Bifurcation Responses of
Mathieu-Duffing Equation
H. Guowei, Chinese Academy of Sciences, Beijing, CHINA and F. Tong
North-Western Engineering University, Shaanxi. CHINA

Bifurcations in the Dynamics of an Orthogonal Double Pendulum I
S. Samaranayake and A. K. Bajaj, Purdue University, West Lafayette, IN

1900-2100 Reception I

Monday, June 8 I

Session 3. Impact Dynamics

Chairmen: A. K. Bajaj, Purdue University, West Lafayette, IN and A. Guran,
University of Toronto, Toronto, Ontario, CANADA

0830-1010

Hammering in Diesel-Engine Driveline Systems
F. Pfeiffer, Technische Universitat Munchen, Munchen, GERMANY

Impact Phenomena of a Rotor-Casing Dynamical System
G. X. Li and M. P. Paidoussis, McGill University. Montreal, Quebec, CANADA

Investigation of the Dynamics and Bifurcations of an Impacting Spherical U
Pendulum with Large Deflections
S. Garza and A. Ertas, Texas Tech University, Lubbock, TX I
Period-Infinity Periodic Motions, Chaos. and Sticking in a 10-Degree-
of-Freedom Impact Oscillator
J. P. Cusumano and B. Bai, The Pennsylvania State University, University U
Park, PA

Continuous Contact Force Models for Impact Analysis in Multibody Systems
H. M. Lankarani, The Wichita State University. Wichita, KS and P. E. Nikravesh,
University of Arizona, Tucson, AZ I Aession For
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Session 4. Dynamics and Control
Chairmen: S. Hanagud, Georgia Institute of Technology, Atlanta, GA and D.
J. Mook, The State University of New York at Buffalo, Buffalo, NY

1030-1210

A Singular Perturbation Analysis of the Equations of Servo-Hydraulics
R. Scheidl, Johannes Kepler University of Linz. Linz, AUSTRIA

Convergence and Asymptotic Stability of Hamiltonian Control Systems
A. J. Kurdila and F. Narcowich, Texas A&M University, College Station, TX

New Composite Adaptive Control Algorithm of Rigid Robots
A. A. Stotsky, Academy of Sciences of Russia. St. Petersburg, RUSSIA

Slewing Dynamics and Control of the Space Station Based Mobile Servicing
System
V. J. Modi and A. Ng, University of British Columbia, Vancouver, British
Columbia, CANADA

Effect of the Linearization of the Coriolis and Centrifugal Forces on the
Feedforward Control Law of Flexible Mechanical Systems
M. Gofron and A. Shabana, University of Illinois at Chicago, Chicago, IL

1210-1330 Lunch

Session 5. Applications to Cables, Strings, and Rotors

Chairmen: S. W. Shaw, The University of Michigan, Ann Arbor, MI and F.
Vestroni, University of L'Aquila, L'Aquila, ITALY

1330-1510

Two-to-One Internal Resonance in Suspended Elastic Cables
C. L. Lee and N. C. Perkins, The University of Michigan, Ann Arbor, MI

Transient Vibrations and Control of a Taut Inclined Cable with a Riding
Accelerating Mass
I. Tadjbakhsh and Y. M. Wang, Rensselaer Polytechnic Institute, Troy, NY

Modal Interactions in a Parametrically and Externally Excited String
S. A. Nayfeh, A. H. Nayfeh, and D. T. Mook. Virginia Polytechnic Institute and
State University, Blacksburg, VA

Behavior of a Cracked Rotating Shaft During Passage Through a Critical
Speed
R. H. Andruet and R. H. Plaut, Virginia Polytechnic Institute and State
University, Blacksburg, VA
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Chaotic Motions and Fault Detection in a Cracked Rotor
P. C. MUller, J. Bajkowski, and D. S6ffker, University of Wuppertal, Wuppertal,
GERMANY U
1510-1530 Break 3
Session 6. Optimization and Computational Methods

Chairmen: I. Tadjbakhsh, Rensselaer Polytechnic Institute, Troy, NY and I. I.
Orabi, University of New Haven, West Haven, CT

1530-1710

An Efficient Algorithm for Elasto-Viscoplastic Vibrations of Multi-Layered I
Composite Beams Using Second-Order Theory
W. Brunner and H. Irschik, Johannes Kepler University of Linz, Linz, AUSTRIA I
Singularity-Free Augmented Lagrangian Algorithms for Constrained Multibody
Dynamics
E. Bayo, University of California, Santa Barbara. CA and A. Avello, University
of Navarra and CEIT, San Sebastian, SPAIN

Constrained Optimization of Space Frame Structures i
J. A. Czyz and S. A. Lukasiewicz, The University of Calgary, Calgary, Alberta,
CANADA

Optimal Placement via Simulated Annealing of Passively Damped Struts in an
Experimental 2-Dimensional Truss
T. A. Hamernik, The State University of New York at Buffalo, Butfalo, NY, E.
Garcia, Vanderbilt University, Nashville, TN, and D. Stech, United States Air
Force Academy, CO

Computation of Lyapunov-Floquet Transformation Matrices for General I
Periodic Systems
J. S. Bibb and S. C. Sinha, Auburn University, Auburn, AL

Tuesday, June 9

Session 7. Coupled Oscillators I

Chairmen: S. Wu, Air Force Office of Scientific Research, Boiling Air Force
Base, DC and E. Bayo, University of California, Santa Barbara, CA

0830-1010

Forced Oscillations of a Rotating Shaft with Nonlinear Spring Characteristics
and Internal Damping I
Y. Ishida and T. Yamamoto, Nagoya University, Nagoya, JAPAN I



Whirling of a Forced Cantilevered Beam with Static Deflection: Passage
through Resonance
I-M. K. Shyu, Taipei, TAIWAN, D. T. Mook and R. H. Plaut, Virginia Polytechnic
Institute and State University, Blacksburg. VA

Subharmonic Forced Traveling Waves in a Thin Perfect Circular Disk
T. A. Nayfeh and A. F. Vakakis, University of Illinois at Urbana-Champaign,
Urbana, IL

Periodic Motion Through a Bifurcation
H. G. Davies and R. Pan, University of New Brunswick, Fredericton, New
Brunswick, CANADA

Formulation of a Vibration Control Law Based on Internal Resonance
K. L. Tuer, M. F. Golnaraghi, and D. Wang, University of Waterloo, Waterloo,
Ontario, CANADA

1010-1030 Break

Session 8. Applications to Mechanical Systems

Chairmen: D. J. Inman, The State University of New York at Buffalo, Buffalo,
NY and S. Nocilla, Politecnico di Torino, Torino, ITALY

1030-1210

Chaotic Behavior of a Parametric Nonlinear Mechanical System
C. H. Lamarque and J. M. Malasoma. Ecole Nationales des Travaux Publics
de L'Etat, Cedex, FRANCE

Chaos in the Unbalance Response of Journal Bearings
R. D. Brown, Heriot-Watt University, Edinburgh, SCOTLAND, P. S. Addison and
A. H. C. Chan, Glasgow University, SCOTLAND

Nonlinear Response of a Class of Engine Mnunts
A. G. Haddow, T. Onsay, and M. Brach. Michigan State University, East
Lansing, MI

Dynamics of a Four Wheel Steer Vehicle
N. E. Sanchez, The University of Texas at San Antonio, San Antonio, TX

A Transmission Merit Parameter for Planar Mechanisms
j F. Wu and H. M. Lankarani, The Wichita State University, Wichita, KS

1210-1330 Lunch
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Session 9. Random Vibrations

Chairmen: R. A. Ibrahim, Wayne State University, Detroit, MI and H. Irschik, I
Johannes Kepler University of Linz, Linz, AUSTRIA

1330-1510 1
Applications in Nonlinear Soil/Structure Interaction
S. J. Serhan, Gilbert Commonwealth, Inc., Reading, PA i
Chaotic Motion and Stochastic Excitation
F. Bontempi, Polytechnic of Milan, Milan, ITALY and F. Casciati, University of
Pavia, Pavia, ITALY

Horizontal-Vertical Response Spectra for El Centro Earthquake I
I. I. Orabi, University of New Haven, West Haven, CT and G. Ahmadi, Clarkson
University, Potsdam, NY I

Stochastic Response of a Parametrically Excited Buckled Beam to Wide-Band
Random Excitation
A. M. Abou-Rayan and A. H. Nayfeh, Virginia Polytechnic Institute and State
University, Blacksburg, VA

Lyapunov Exponents and Information Dimensions of Nonlinear Systems Under
Deterministic and Stochastic Excitations
C. W. S. To and M. L. Liu, The University of Western Ontario, London, Ontario,
CANADA I
1510-1530 Break 3

Session 10. Analytical Methods 11 3
Chairmen: A. Ertas, Texas Tech University, Lubbock, TX and S. A.
Lukaslewicz, The University of Calgary, Calgary, Alberta, CANADA 3
1530-1710

The Nonstationary Period Doubling Route to Chaos I
R. M. Evan-lwanowski, University of Central Florida, Orlando, FL and C.-H. Lu,
Memphis State University, Memphis, TN 3
Prediction of Escape from a Potential Well Under Harmonic Excitation
L. N. Virgin, Duke University, Durham, NC. R. H. Plaut and C. C. Cheng,
Virginia Polytechnic Institute and State University, Blacksburg, VA

Assessing and Quantifying the Engineering Integrity of Nonlinear Vibrating
Systems in Terms of Basins of Attraction I
M. S. Soliman, University College London. London. ENGLAND I



.ifluence and Equivalence of Different Ship Roll-Damping Models through a
Melnikov Analysis
M. Bikdash, B. Balachandran, and A. H. Nayfeh, Virginia Polytechnic Institute
and State University, Blacksburg, VA

Nonlinear and Chaotic Oscillations of a Constrained Cantilevered Pipe
Conveying Fluid: A Full Nonlinear Analysis
M. P. Paidoussis and C. Semler, McGill University, Montreal, Quebec,
CANADA

1900 Banquet

Wednesday, June 10

Session 11. Analytical and Symbolic Methods

Chairmen: A. Vakakis, University of Illinois at Urbana-Champaign, Urbana, IL
and J. Awrejcewicz, The University of Tokyo, Tokyo, JAPAN

0830-1010

On the Nonlinear Parametric Excitation Problems of a One and a Half Degrees
of Freedom System
J. X. Xu, Xi'an Jiaotong University, Xi'an. Shaanxi Province, CHINA

The Symbolical Analysis of Nonlinear Systems of Differential Equations
G. S. Osipenko, State Technical University, St. Petersburg, RUSSIA

I Nonlinear Vibration of a Flexible Connecting Rod
S. Hsieh and S. W. Shaw, The University of Michigan, Ann Arbor, MI

I Chaotic Motion of a Gyrostat Satellite in a Circular Orbit
A. Guran, University of Toronto, Toronto. Ontario. CANADA

1 1010-1030 Break

I Session 12. Applications to Structural Elements

Chairmen: S. C. Sinha, Auburn University, Auburn, AL and H. G. Davies,
University of New Brunswick, Fredericton, New Brunswick, CANADA

I 1030-1210

On the Dynamic Behavior of a Flexible Beam Carrying a Moving Mass
F. Khalily, M. F. Golnaraghi, and G. R. Heppler, University of Waterloo,
Waterloo, Ontario, CANADA

I
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A Geometrically-Exact Beam Theory Accounting for Warpings and 3-D Stress
Effects
P. F. Pai and A. H. Nayfeh, Virginia Polytechnic Institute and State University,
Blacksburg, VA

Experiments on the Nonlinear Resonant Response of Thin Elastic Plates 3
S. A. McCabe, P. Davies, S. I. Chang, and A. K. Baial, Purdue University, West
Lafayette, IN

Parametrically Excited Nonlinear Vibrations of Composite Flat Panels
Exhibiting Initial Geometric Imperfections and Incorporating Non-Classical
Effects
L. Librescu and S. Thangjitham, Virginia Polytechnic Institute and State
University, Blacksburg, VA

Large Flexural Vibration of Thermally Stressed Layered Shallow Shells
R. Heuer, Technical University of Vienna. Vienna. AUSTRIA

1210-1330 Lunch i

Session 13. Multibody Dynamics I i
Chairmen: A. Shabana, University of Illinois at Chicago, Chicago, IL and J.
X. Xu, Xi'an Jiaotong University, Xi'an, Shaanxi Province, CHINA

1330-1510 3
Experimental High Speed Response of a Slider Crank
D. Beale and D. Halbig, Auburn University, Auburn, AL 3
Steady State Response of a Slider Crank with Flexible Rod
D. Beale and S. Lee, Auburn University, Auburn, AL 3
The Inter-Relation Between Multibody Dynamics Computation and Nonlinear
Vibration Theory
A. P. Kovacs and R. A. Ibrahim, Wayne State University, Detroit, MI

Steady-State Analysis of Large Scale Mtiltibody Systems with Special
Reference to Vehicle Dynamics I
J. N. Lee and P. E. Nikravesh, The University of Arizona, Tucson, AZ

Damping of Parametrically-Excited SDOF Systems 3
K. A. Asfar, TH Darmstadt, GERMANY

1510-1530 Break i

I
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Session 14. Coupled Oscillators Il

Chairmen: J. Wauer, Universitat Karlsruhe, Karlsruhe, GERMANY and Y.
Ishida, Nagoya University, Nagoya, JAPAN

1530-1710

Iterated Maps in the Periodic Response of a Two DOF Elastoplastic System
D. Capecchi and F. Vestroni, University of L'Aquila, L'Aquila, ITALY

Analytical Construction of the Two-Parameter Family of Quasiperiodic
Solutions in tne Autonomous System
J. Awrejcewicz and T. Someya, The University of Tokyo, Tokyo, JAPAN

Constructing Invariant Tori for Two Weakly Coupled van der Pol Oscillators
D. E. Gilsinn, National Institute of Standards and Technology, Gaithersburg,
MD

Normal Modes for Weakly Nonlinear Dynamical Systems
S. W. Shaw and C. Pierre, The University of Michigan, Ann Arbor, MI

Mode Localization in a System of Two Coupled Beams with Geometric
Nonlinearities
M. E. King and A. F. Vakakis, University of Illinois at Urbana-Champaign,
Urbana, IL

Thursday, June 11

Session 15. Multibody Dynamics I/

Chairmen: G. Anderson, United States Army Research Office, Research
Triangle Park, NC and P. E. Nlkravesh, University of Arizona, Tucson, AZ

0830-1010

Multibody Dynamics of Aircraft Occupants Seated Behind Interior Walls
H. M. Lankarani, D. Ma, and R. Menon, The Wichita State University, Wichita,
KS

Modelling of Vehicle Crash Tests by a Multibody System
J. P. Mizzi, Institut National de Recherche stir les Transports et leur Securite,
Cedex, FRANCE

Intermittent Motion Analysis in Multibody Dynamics Using Joint Coordinates
and Canonical Equations of Motion
M. S. Pereira, Technical University of Lisbon. Lisbon. PORTUGAL and P. E.
Nikravesh, The University of Arizona, Tucson. AZ

On the Dynamics of Tethered Satellite Systems
J. Wauer, Universitat Karlsruhe, Karlsruhe. GERMANY



I
I

Nonlinear Motion of an Arbitrarily Shaped Satellite in an Elliptic Orbit
Including the Ef-,cts of Damping
A. Guran, University of Toronto, Toronto, Ontario, CANADA and A. Vakakis,
University of Illinois at Urbana-Champaign, Urbana, IL

1010-1030 Break I
Session 16. Flow-Induced Vibrations and Computational
Methods 3
Chairmen: R. M. Evan-lwanowski, University of Central Florida, Orlando, FL
and B. Cheshankov, University of Sophia, Sophia, BULGARIA 3
1030-1210

Nonlinear Dynamics of Articulated Cylinders Subject to Confined Axial Flow I
M. P. Paidoussis and R. Botez, McGill University, Montreal, Quebec, CANADA

Weak and Strong Interactions in Vortex-Induced Resonant Vibrations of I
Cylindrical Structures
C. W. S. To, Q. S. Lu, and Z. S. Jin, The University of Western Ontario, London,
Ontario, CANADA

An Efficient Numerical Technique for the Analysis of Parametrically Excited
Nonlinear Systems
N. R. Senthilnathan and S. C. Sinha, Auburn University, Auburn, AL

A Mesh Repartitioning Scheme to Cope with Nonlinearities Resulting from 3
Large and Fast Rotations of Deformable Bodies
A. Arabyan and T. Tsang, University of Arizona, Tucson, AZ

Response of Multi-Degree-of-Freedom Systems with Geometrical Nonlinearity i
Under Random Excitations by the Stochastic Central Difference Method
C. W. S. To, The University of Western Ontario. London, Ontario, CANADA 3
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Nonlinear System Identification Without Model Form Assumptions

-- Thomas J. Meyer and D. Joseph Mook
Department of Mechanical and Aerospace Engineering3 State University of New York at Buffalo, Buffalo, NY 14260

Abstract
A robust nonlinear identification technique, based on the Minimum Model Error (MME) opti-

mal estimation approach, is modified by a post-estimation correlation procedure to essentially
eliminate any requirement of the user to assume the form of the nonlinear model. Model form is
determined via statistical correlation of the MME optimal state estimates with the MME optimal
model error estimates. The example illustrations, drawn from several physical systems, indicate
that the method is robust with respect to prior ignorance of the model, and with respect to measure-
ment noise, measurement frequency, and measurement record length.

The widespread existence of nonlinear behavior in many dynamic systems is well-docu-
mented. Many excellent methods for analyzing nonlinear system models have been developed.
However, a key practical link is often overlooked: How does one obtain an accurate mathematical
model for the dynamics of a particular complicated nonlinear system? The complexity of many real

I systems greatly diminishes the possibility of accurately constructing a dynamic model purely from
analysis using the laws of physics.

Identification is the process of developing an accurate mathematical model for a system, given
I a set of output measurements and knowledge of the input. Many well developed and efficient iden-

tification algorithms already exist for linear systems. These often may be employed to model non-
linear systems when the system nonlinearities are small, and/or the system operates in a small

I linear regime. However, linearization does not work well (if at all) in every application, and even
when it does provide a reasonable approximation, the approximation is normally limited to a small
region about the operating point of linearization. Many important characteristics of nonlinear

I behavior, such as multiple steady-states, limit cycles, hysteresis, softening or hardening systems,
chaos, etc., have no linear equivalent. Since nonlinearities are seldomly easily characterized, accu-
rate nonlinear identification techniques are of high interest.

Numerous methods for the identification of nonlinear systems have been developed in the past
two decades. In addition to the linearization approach, there are two other common approaches to
nonlinear system identification: representing the system/nonlinearities using a series expansion, orI assuming the form of the model a priori and then fitting parameters to the assumed model form.
These existing techniques are subject to one or more of the following shortcomings: (i) For many
techniques which require model form to be assumed a priori, the effort required to test a given form

I is considerable, which limits consideration of many different forms. (ii) Series expansions mask or
eliminate understanding of the underlying physics. Moreover, many systems require a very large
number of terms. (iii) The presence of noise in the measurement data is not rigorously treated, yetI noise is generally unavoidable. (iv) Initial conditions must be known in order to implement the
algorithm. (v) The algorithm can only be implemented if the data is obtained using very specific
system excitations.3 The technique of this paper is robust with respect to measurement noise; does not require
knowledge of the initial conditions; is independent of the forcing; is not computationally prohibi-
tive; and, most importantly, it requires minimal a priori assumptions regarding the form of the
model or the system properties.

I mdl h
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Nonlinear Control of a Slewing Flexible Structure 3
Ralph W. Rietz

Research Assistant
Mechanical & Aerospace Engineering

State University of New York at Buffalo
Amherst, New York 14260 I

Daniel J. Inman
Professor &Chairman

Mechanical & Aerospace Engineering
State University of New York at Buffalo

Amherst, New York 14260

Abstract i

A nonlinear feedback control used to suppress vibrations and control the tip
position of a slewing flexible structure is presented. The open loop system consists of a
DC motor and a thin beam clamped at the, hub (Figure 1). The motor and beam are
modelled as an inertia-free system with an input torque at the hub. The open loop system is
linear.

The controller is designed to control the rigid body mode and the first four flexible
modes of the beam through a slewing maneuver. Using a multiple of state position and
state velocity feedback provides a continuously variable damping term, which can improve
the system response over optimal linear controllers. Several types of nonlinear feedback
are presented. The simplest case involves sensing angular position and angular velocity at
the hub. A linear PD controller can be designed and a multiple of the angular position and
angular velocity yields the nonlinear damping. The second case requires the construction
of a state estimator providing the states of the four flexible modes. The resulting feedback
is equivalent to a full state feedback plus a nonlinear damping term, where the state I
positions and the corresponding state velocities are multiplied and fed back to the motor. In
the third case, piezoceramics are used as sensors along the beam. The result is an
improvcd feedback to the motor, since the flexible modes are mnore easily sensed along the
beam. Also, using piezoceramics for collocated sensing and actuation is investigated. This I
leads to an interesting feedback situation, where a multiplication of position and velocity is
fed back to the motor and a different, but similar, nonlinear term is returned to the
piezoceramic for actuation. Any combination of the above mentioned controls is also I
possible. For example, angular position and angular velocity at the hub can be measured, a
piezoceraic can be used near the hub on the beam to sense the relative motion of the beam
to its rigid body state and a state estimator can be used to obtain any other states which are
not directly sensed. Numerical simulations and experimental results of the various
nonlinear feedback controls discussed above are presented. Figure 2 shows a simulation of
the linear control system. Figure 3 shows the same system plus the nonlinear position
times velocity feedback.

I
I
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I DC motor piezoceramic beam

I Figure 1: Motor and Beam Assembly

I
" 0.7 NnLinear position and velocity feedback
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Figure 3: Response using nonlinear control
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ON THE OPTIMAL CONTROL OF LARGE SCALE

MECHANICAL SYSTEMS SUBJECTED TO PERIODIC LOADING 3
Paul Joseph, R. Pandiyan and S. C. Sinha
Department of Mechanical Engineering I
Auburn University, Auburn, AL 36849

ABSTRACT

Mechanical systems subjected to periodic loading are modelled as a set of
differential equations with periodic coefficients. For some time now, orthogonal
polynomials have gained considerable attention in the stability and analysis of such
systems. The major advantage of this procedure is in reducing the system
equations to that of solving sets of algebraic equations. This algebraic method has I
been found more efficient than the standard numerical techniques[I], especially
when the systems are large. 3

Often active control of structural characteristics is necessary to ensure
desirable response of systems subjected to periodic loading. Control
methodologies for general time-varying systems have been well reported[2]. In all,
the optimal control strategy[3] stands out with distinct advantages. Also, it has
been shown that the algebraic method and the optimal control strategy blends
together well and provides a method for controller design of time-varying
systems[4]. This paper presents an application of the above mentioned time-
efficient algebraic method[1] to the control of large scale mechanical systems via
optimal control theory. It is also shown that an observer based controller design
for such systems can be achieved without resorting to the use of canonical
transformations as reported in the literature[5].3

The Control Problem: The control of a periodically varying system

±(t) =A(t)x(t) +B(t)u(t); z(O)=x3 ; A(t+T)=A(t) (1) 5

y(t) = C(t)X(t) (2) 1

with respect to a quadratic performance index m

C, (3)
j = (r(tf) S(t,) x(tf)) + fXz(t)Qg(t)(t) + ur(t)R(t)u(t)Idt

o I
is considered where all the vectors and matrices have usual properties as defined
in reference[6]. 3

I
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As a first step, the 2n differential equations of the Linear RegulatorI problem in state and adjoint variables are formed. Then the state and adjoint
vectors along with elements of the Hamiltonian matrix are expanded in terms of
Chebyshev polynomials over the time period as elaborated in referencelI]. This
reduces the original problem to a set of linear algebraic equations, the solutions
of which provides the state transition matrix of the 2n system. Once this transition
matrix is obtained, the controller gains are easily constructed as given in
reference[6].

i Observer Design for Periodic Systems: The form of the observer equation for
the system (1) is given by

i(t) = F(t) z(t) + G(t)y(t) + H(t) u(t) (4)

Byselecting F(t) = A(t) - G(t) C(t) ;H(t) = 8(t) . and defining the errorstate
as e(t) = x(t) - z(t) the error dynamics of the system is given by

6(t) = [A(t) - G(t)C(t)]e(t) (5)

I The G(t) is computed such that error dynamics is asymptotically zero as the time
goes to infinity. The transpose of the gain matrix of the dual system of (1)Im provides G(t) and the computation procedure is as described above.

Numerical Results and Conclusions: As an example of large scale mechanical
system, consider the inverted triple pendulum problem bearing a periodic
directional load as shown in figure 1. The problem has been solved for single,
double and triple inverted pendulum models in order to show the viability of thei technique for large scale systems. As a typical example, results of open loop
behavior of the double inverted pendulum under the periodic loading is provided
in figure 2. Then the control systems were designed using both direct feedbackI and observer based feedback laws and the corresponding closed loop response of
the double inverted pendulum are depicted in figures 3 and 4 respectively. It has
been found that the results obtained using this technique, matches with the
numerical integration results for relatively small number of Chebyshev coefficients.
Many attractive features of the present technique are noted namely, (i) reduction
of the control problem to a process of solving a set of algebraic equations, (ii) the
computational efficiency compared to numerical procedures as the system becomes
larger and larger, (iii) the adaptability to parallel processing machines and (iv)
finally, ability to place poles of closed loop time-varying systems through optimal
control theory.

Acknowledgements: Financial support from ARO contract no. DAAL03-89-k-
0172 monitored by Dr. Gary L. Anderson is gratefully acknowledged.
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A HEURISTIC APPROACH IN Tr, OPTIMAL CONTROL FOR
SOMIE MANIPULATORS

B. Cheshankov

A motion of a manipulator with three degrees of freedom is
considered. One of the coordinates corresoonds to a rotation about

a vertical axis. When one specifies the two other coordinates a
manipulator which operates in cylindrical coordinate system or a
manipulator which operates in spherical coordinate system is descpi-
bed. The motion of an anthropomorphous maniDulator can be described

I3 too. The problem of time-optimal control is stated. To seek such con-
trol which satisfies some constraints and guides the gripper of the3 manipulator from an initial state to a given finite state within a
minimal time. The main point of the heuristic approach is to guide
the manipulator from the initial state to a state which corresponds
to a configuration of the manipulator in which the moment of inertia
of the whole system about --the-axis of rotation reaches its minimal
value (while the coordinate which describes the rotation increases
monotonously). During some time a motion with maximal acceleration

I (because of the minimal value of the moment of inertia) is executed.
After this the manipulator should be guided to the finite state. Va-

Srious cases are possible which depends on the initial conditions.
For some initial conditions the minimal value of the moment of iner-
tia could not be reached (there is not enough time for this) and
this process should be stopped at some point. After this the manipu-
lator should be guided to the finite state. In all cases the finite
values for all coordinates should. be reached simultaneously. The-sin-
gularities for the motion of different concrete manipulators when

I employing this heuristic approach are discussed. Some numerical exam-
ples are given. - - ¶

I.
I
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3' The Reginnal-Averaging Method and its Application

to Chaotic Dynamics in Nonlinear Mathieu Systems

I Chcn Yushu Zhang Weiyi
Tianjin University, P.R.ChinaU

U Because of the simple calculation for averaging method,a great deal of local

bifurcation problems were solved by averaging method or improved averaging method by

many people ,such asChow(ll,Bryno(2j.Van Der Beek [31 , Chen Yushu [41 ,etc.ln these

works,people calculated only the first order approximate solution. Can we express the first

order ap',)roximate solution of nonlinear systems by more simple analysis? It needs to

study the case of existing strong nonlinear terms in its derivative systems for studying the

global problem, in this time, the classical averaging method is not suitable. There are some

averaging methods for the study of stable responsc,such as.the generalized

averaging method . the method of expanding in ellipse function and Melnikov method.

There arc a grcat differcncc among the forms of the results by different methods. It is hard

to tell whether they are equivalent. Comparablcly, Melnikov method is the unique system-

atically method in analysing global bifurcation and chaos, but it can give only the rices.

sary condition of existing subharmonic solution and chaos solution. For the complicated

systems, especially for the systems with multi-frequencys forcing ,it is difficult for using

Melnikov method to annlyse.ln fact,the critical value of existing subharmonic solution

and chaos solution by .Melnikov method is a approximate range, it is lower limit. It makes

numerical or experimentRl examining difficult and impossible. So. it is very important to

study the sufficient and necessary condition of existing subharmonic solution and

I chaos solution.

In this paper, we present a new method, Regional- Averaging Method

(AA inethod)J5] . RA method is different from existing averaging methods. It does not

need to transform the equation, (Such as. coordinate transformation. KB transforma-

tion, erc) and can get the approximate solution directly. The local bifurcation, global3 bifurcation and chaos can be analysed by RA method. In the study of local bifurcation,the

results by RA method are equivalent to the first order approximate results by existing av-

craging methods. In the study of global bifurcation, RA method can analyse the the suffi-

Scient and necessary condition of existing subhamonic solution and chaos solution. Com-

paring with Mel'nikov method, we point out that in the case of nonresonance, Melnikoy3 method gives the sufficient and necessary condition, in the case of resonance. Melnikov

-mcthod gives only the necessary condition. RA method can give the sufficient and neces-

sary condition.
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Existence and non existence of periodical solutions

of the Li6nard and related equations

by Silvio Nocilla and Paola Moroni

In a recent paper [11 sufficient conditions are obtained in I
order that the Li6nard Equation:

(1) x + f(x) k + g(x) = 0 3
don't have periodical solutions, thous limit cycles don't exist.
It is well known, see for inst.[2], Chap.3 , that a large lot of
papers are devoted to the approximated calculation of such limit
cycles, in particular for the Van der Pol or Rayleigh Equation.
The present paper, which can be related to a previous paper of
the first Author [3], deals with following topics:

a)to give a procedure for exact calculation of the limit cycles.
The procedure is the same applied in [31 and in other papers, for I
instance [4] and [5). Namely we look for a periodical
monoscillating solution in the parametric form:

x = x sin - E [-TQ/2, 1/2
(2) 1-

fit = + j(?(s) ds

and we obtain a fixed-point problem in a Banach space for the
unknown form function Y (C), with auxiliary conditions, also
involving the unknown constants (x',R). Particularly interesting
is the fact that no-assumptions on "small non-linearity
parameters" are introduced.

b)to give a criterion for the existence of periodical- I
monoscillating solutions, and to test this criterion in the
particular cases. For Eq.(1) the criterion is that setting:

H (fg;t;x*,Q) =[F(x~sint)-F(-x*)I + g(x sin s)ds 3
the system of algebric Eqs:

(4) H (f,g;-(/2;x*,fb 0 0
(5) x + dT = 0

cos C

has a real solution (x*,S)E R+.
The definite integral in (5) is convergent in force of conditon
(4).
The criterion ca4be easy generalized to more general Equations.

S!3

I



c)to show that also for other classes of Li~nard's equations not
satisfyng to the conditions given in [1], the non-existence
property is true. For instance the Eq:

(6) x - V(l+x )X + x = 0

don't has periodical solutions. Another example is given by Eq:
.0 ~2

(7) x - V(l-x ) + x + k x 0

for which, according to the above criterion, the periodical
solution exist only for k>-2/5. A third example is given by Eq:

(8) x - h(l-x ) sgn x + x = 0

already considered in [2], for which periodical solutions exist
only for k., 2.
For Equation: ""

(9) x + (10+x) x + x = 0

considered in [1] as ist example, the above criterion leads to
two conditions: the 1st one is:

20-Q x* = 0
which clearly haS. no solutions (x*, (e ) R+; the second one is
meaningless because it contains a divergent integral. Thous ourcriterion agrees with the conclusion drawn in [1].

d)to carry out the exact calculation of the limit cycle with
iterative procedure when the conditions of the criterion ate
satisfied, and to study the character of the solutions (my be
chaotic solutions) when the conditiodon't hold'.

The results obtained with the parametric method are compared
with standard Runge-Kutta numerical integration.
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The loss of stability of periodic attractors I
and their transient precursors

L.N. Virgin, P.V. Bayly, K.D. Murphy,
J.A. Gottwald and E.H. Dowell

School of Engineering I
Duke University, Durham, NC 27706, USA. I

Abstract

The behavior of a harmonically excited, nonlinear mechanical
oscillator is dominated by the presence of periodic attractors which 3
compete to capture local transients. Each of these stable, steady-
state solutions has associated with it a catchment region of initial
conditions. These catchment regions are delineated by separatrices I
which pass through the unstable solutions. Under the smooth
variation of certain system parameters, such as forcing frequency or
damping, catchment regions may erode and bifurcations may occur,
signalling a qualitative change in behavior. In practical terms a
stable oscillation may lose its stability. m

The loss of stability of a periodic attractor is reflected in the
rate of attraction of transients. This feature underlies classical
Floquet theory. These transients may be caused by start-up I
conditions, for example exciting a system initially at rest, or may be
caused by inevitable perturbations to a steady-state. It is this latter
kind of transient which is induced in the current study. The ensuing
motion and its rate of attraction is then monitored as a function of
the changing control parameter and stability predictions are made. I

For a single-degree-of-freedom system under the operation of
one control parameter, two common generic mechanisms of 3
instability are the saddle-node bifurcation associated with the jump
phenomenon [1] and the flip bifurcation associated with the initiation
of a sequence of period doubling. It is well established that both of I
these bifurcations are related to the penetration of a characteristic
multiplier through the unit circle. 3

U
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Suppose a system is exhibiting stable steady-state behavior.

Now if a small perturbation is induced, the characteristic multipliers
govern the behavior of the subsequent transient as it decays onto the
periodic attractor. Suppose that the control parameter is varied byI means of a quasi-static increment or a slowly changing function of
time. Poincare mapping techniques can be employed to construct a3 local (linear) description of the transient behavior and, from the
subsequent approximation to the Jacobian matrix, characteristic
multipliers can be obtained. It is the evolution of these characteristic

i multipliers that reflects the approach to instability.
This may be considered as the numerical analogy of Floquet

theory, and in the current paper this technique is applied to both
numerical simulations and mechanical experiments. Two archetypal
nonlinear mechanical models are chosen to illustrate the technique: a3 geometrically nonlinear spring-mass-damper and its approach to
the jump phenomenon, and an impacting pendulum and its approach
to period doubling [2]. It is shown that incipient instability can be
predicted using transient dynamical effects. Extensions to the current
method hold considerable promise in the non-destructive monitoring

Sof deteriorating dynamical systems.
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Z.-Singularity Theory and 1/2 Subharmonic Bifurcation 3
Responses of Mathieu-Duffing Equation

(Abstract)

He Guowei U
Laboratory For Nonlinear Mechanics of Continuous Media

Institute of Mechanics, Chinese Academy of Sciences I
Beijing, 100080, China

Fang Tong 3
Institute of Vibration Engineering Research

North-X estern Engineering University
Xian, Shaanxi, 710072, China

U
Since the Hopf bifurcation diagrams in the autonomous systems

were obtained with singularity theory, the attempt to obtain the
subharmonic bifurcation diagrams in the periodic parametric I
excited systems has been made by use of averaging equations ana
amplitude equations, whose bifurcation diagrams can be
investigated by the singularity theory of one variable, however,
the averaging equations or amplitude equations are not contact
equivalent with the parametric excited system. it is following
that their bifurcation diagrams are different topologically from I
the bifurcation diagrams of the parametric excited systems. In
this paper the 1/2-subharmonic bifurcation problems of the
parametric excited systems (e.g. Mathieu-Duffing equation) are
investigated under the Z1 -contact equivalence in order to obtain
the bifurcation diagrams which are topological equivalent to the
subharmonic bifurcation diagrams of the periodic parametric
excited systems. I
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1 Firstly the 1/2 subharmonic bifurcation problems of the
Mathieu-Duffing equation are transformed to the complex algebraic
bifurcation equation via the Liapunov-Schmidt reduction. The
complex algebraic bifurcation equation, which is leading
equivalently to two real variable ( not one ! ) algebraic
bifurcation equations, are Z2 -contact equivalent to the Mathieu-
Duffing equation. Therefore, we must use the Z 2 -equivarient
singularity of two real variables to investigate their

bifurcation diagrams. Secondly the Z2 -equivarient singularity
theory of two variables is formulated, including the recognition
theorem and universal unfolding theory. Finally the overall 1/2
subharmonic bifurcation diagrams of the Mathieu-Duffing equation
are obtained in the polar coordinates with the above theorem. The
numerical simulation is agreement with our theoretic results.

The Z.-equivarient singularity theory of two variables and
corresponding judgment conditions are not only suitable to the
study on 1/2 subharmonic responses of the Mathieu-Duffing
equation, but also suitable to the other periodic parametric
excited systems. And more the Z.-equivarient singularity theory
is also formulated in the author's doctorical thesis, which can
be used to study 1/n subharmonic bifurcation diagrams of the3 Iperiodic parametric excited systems.

I
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BIFURCATIONS IN THE DYNAMICS OF AN
ORTHOGONAL DOUBLE PENDULUM 3

I
S. Samaranayake 3

A. K. Bajaj
School of Mechanical Engineering

Purdue University
West Lafayette, IN 47907 1
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The weakly nonlinear resonant response of an orthogonal double pendulum to planar

I harmonic motions of the point of suspension is investigated. The two pendulums in the double

3 pendulum are confined to two orthogonal planes. For nearly equal length of the two pendulums,

the system exhibits 1:1 internal resonance. The method of averaging is used to derive a set of

four first order autonomous differential equations in the amplitude and phase variables. Constant

3 solutions of the amplitude and phase equations are studied as a function of physical parameters

of interest using the local bifurcation theory. It is shown that, for excitation restricted in either

plane, there may be as many as six pitchfork bifurcation points at which the nonplanar solutions

bifurcate from the planar solutions. These nonplanar motions can become unstable by a saddle-

node or a Hopf bifurcation, giving rise to a new branch of constant solutions or limit cycle

solutions, respectively. The dynamics of the amplitude equations in parameter regions of the

I Hopf bifurcations is then explored using direct numerical integration. The results indicate a

3 complicated amplitude dynamics including multiple limit cycle solutions, period-doubling route

to chaos, and sudden disappearance of chaotic attractors.
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HAMMERING IN DIESEL-ENGINE

N DRIVELINE SYSTEMS
I

Friedrich Pfeiffer, Mfinchen

U
I

Machines and mechanisms are characterized by rigid or elastic bodies interconnected
in such a way that certain functions of the machines can be realized. Couplings in
machines are never ideal but may have backlashes or some properties which lead to3 stick-slip phenomena. Under certain circumstances backlashes generate a dynamical
load problem if the corresponding couplings are exposed to loads with a time-variant
character. A typical example can be found in gear systems of diesel-engines, which

usually must be designed with large backlashes due to the operating temperature
range of such engines, and which are highly loaded with the oscillating torques of
the injection pump shafts and of the camshafts. Theriefore, the transmission of

power from the crankshaft to the camshaft and the injection pump shaft takes place
* discontinuously by an impulsive hammering process in all transmission elements.

Mechanically, processes of that type are unsteady vibrations characterized by a time
series of impulsive events and thus belonging to the class of nonlinear vibrations with

an unsteady behaviour. As a rule such vibrations may be periodic, quasiperiodic
or chaotic with a tendency to chaos for large systems. Considering the driveline-3 gear-system as a multibody system with totally f degrees of freedom and with np
backlashes in the gear meshes or in the bearings we model the backlash properties
by a nonlinear force characteric with small dissipative forces within the backlash
and a linear force law in the case of contact of the flanks. The event of a contact

is determined by an evaluation of the relative distance in each backlash, whichI



I
I

serves as an indicator function. The indicator function for leaving the contact,
i.e. flank separation, is given with the normal force in the point of contact, which
changes sign in the case of flank separation. These unsteady points (switching
points) must be evaluated very carefully to achieve reproducable results. The time 3
series of impact forces will be reduced to load distributions in a last step. They
might serve as a basis for life time estimates. It turns out that distributions in the

form of Gamma-functions and related relations represent the unsteady hammering
process surprisingly well.

Theory has been compared with measurements at a 4-stroke 12 cylinder diesel- I
engine with 3000, where experiments have been performed by a German diesel-engine

manufacturer. Simulations and experiments agree quite well. 3
I
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Impact Phenomena of a Rotor-Casing Dynamical System

G.X. Li and M.P. Paidoussis
Department of Mechanical Engineering

McGill University
Montreal, PQ, Canada

Rub between a rotor and its supporting device is a serious
malfunction in rotating machinery. In this talk, a shaver rotor-
casi.g system with clearance is modeled by two second-order
differential equations with zero stiffness, and the dynamics is
investigated through analytical form of solutions as well as
numerical simulation. The results demonstrated the existence of
whirling behaviour (rubbing), periodic and quasi-periodic impacts,
and in some cases chaotic solutions. A Lyapunov exponent technique
is developed to characterize the system behaviour due to changes of
system parameters.

In nondimensional form, the system governing equations can be
written as follows:

A - e cost, 37 - e sin (t), i

where x and y represent the position of the geometric centre of the
rotor, and e is the eccentricity of the unbalance. Upon impacting,
the rotating rotor either continuously rubs against the casing in
the same direction as the rotor speed (forward whirling) or in an
opposite direction (backward whirling), or it may bounce back and
forth within the clearance. If the normal and tangential velocity
components, before impacting, are denoted by vn. and vt., and those
after impacting by v"+ and vt÷, then the impact rules between the
rotor and the casing may be expressed as

vn - -a v!, v+" - (1-B) vit, (2)

where a is the coefficient of restitution, representing the energy
loss caused by impacting, and B is the breaking coefficient and is
given by

vn
B - g (1+a) .-. (3)

Vt
Such kind of rotating systems has been studied extensively in

the past with a variety of models, but most of the work were
dealing with the whirling behaviour of the system. Ehrich (1] and
Billet [2] considered only the case of backward whirling and
neglected any external forcing such as that due to mass unbalance.
They basically came to the same conclusion as Den Hartog (3] that
if the rotor runs under normal operation condition it is stable due
to spring restoring forces; but as soon as it is perturbed from its
central position and temporarily deflected so as to striking the
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casing, it is set into backward whirling. Johnson (4], on theother hnconsidered the eccentricity ofthrorbunelcd

the effect of friction on the system response. He concluded that
upon contact, only steady-state synchronous whirl could be
possible. In the proposed model here, both whirling behaviours
were observed. Furthermore, through numerical simulation, regions i
were also observed in parameter space where no whirling is possible
but the rotor starts impacting with its casing. Two such impact
behaviours are shown in Figures 1 and 2 in the (x,y) planp. In
Figure 1 the rotor impacts with the casing in the same direction as
its rotating speed and the response is quasi-periodic. For some
larger values of the dry friction and eccentricity, the resulting I
trajectory has become highly irregular, as shown in Figure 2.

In the impact regions, analytical solutions may be obtained
for equation (1) in the time interval between any two consecutive
impacts. Thus the system (1), together with the impact rule (2),
may be converted into a set of discrete equations. Consequently,
the Lyapunov exponent technique can be applied to the discretized I
equations to characterize the system dynamic behaviour. Numerical
calculations of Lyapunov exponents show that the response in Figure
1 is indeed quasi-periodic with a zero exponent, and the one in I
Figure 2 is chaotic resulting in a positive exponent.

References: I
(1] F.F. Ehrich (1969), J. Engineering Industry, pp.1025-1028.
(2] R.A. Billet (1965), The Engineer, 220, pp.713-714. 3
(3] Den Hartog (1947), Mechanical Vibrations, McGraw Hall: New

York.
(4] D.C. Johnson (1962), J. Mech. Eng. Sci., 4, pp.85-93. i
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Investigation of the Dynamics and Bifurcations
of an Impacting Spherical Pendulum

with Large Deflections

S. Garza and A. Ertas
Mechanical Engineering Department

Texas Tech University
Lubbock, Texas 79409

ABSTRACT

The inverted spherical pendulum is a common engineering paradigm for
strong focusing mechanisms. Strong focusing mechanisms have practical ap-
plication in laser stability, synchatrons, magneto plasma confinement, long
distance laser focusing and containment of charged particles. The system has
direct impact on damping nutation of space craft and vibration absorbtion in
helicopters. A model of such a pendulum system with vertical forcing, large
deflection and impacting is being studied. The model will include quadratic
and Coulomb damping. It will be shown that the two coupled equations of
motion for the system reduce to one in the presence of damping for long term
motion. An autonomous exact solution of the parametrically forced pendu-
lum model with quadratic and Coulomb damping is studied. This solution of
the equation of motion would allow solutions for minimum conditions of wall
impact, type I, type II motions and Melnikov bifurcation analysis. Vector
plots of the solution for varying initial conditions of position and velocity will
be shown. Theoretical analysis shows that the inversion criteria for a non-
impacting parametrically forced spherical pendulum is similar to that of a
parametrically forced plane pendulum. Analysis also suggests the interesting
point that the system will exhibit type II motion (striking alternate walls) at
lower energy input levels than are required for type I motions (striking the
same wall repeatedly). Melnikov analysis will be performed on the system
at the initial condition of 0 = 7r for varying initial angular velocities.



Period-Infinity Periodic Motions, Chaos, and Sticking in a
10-Degree-of-Freedom Impact Oscillator 3

J. P. Cusumano and Binyi Bai
The Pennsylvania State University, University Park, PA 16802 I

Abstract 3
In this paper, the numerical study of a 10-degree-of-freedom impact oscillator is presented.
The mathematical model is of a lumped mass system in which each mass is connected to its
nearest neighbors by linear springs and linear viscous dampers. One end mass is connected
to a rigid support, while the other is free to impact with a sinusoidally moving rigid table.
Bifurcation diagram. bWised on the impact map are obtained over the entire range of natural
frequencies of the s' ,tem. The diagrams (see, e.g., Fig. 1) reveal many chaotic bands, as well
as a wide varic , f period-n, in orbits, where n is the period with respect to the impact map 3
and in is th- period with respect to the table motion. The type of period-n, mn orbits and the
existencc of chaos is ascertained by examining projections of the Poincar6 sections (as in Fig.
2). Chaos is also confirmed by direct study of sensitive dependence on initial conditions.
PeIAlaps the most interesting solutions are period- oo, in periodic orbits (where m is finite).
These arise from sticking events where the time between impacts approaches zero in finite
time.

Since all of the nonlinearity in the problem is contained in the impact boundary condition,
analytical solutions are easily found for the system motion between impacts. These solutions
are then used to construct the implicit 20-dimensional Poincar6 map defined by the impact
condition. The only variable that changes across the impact is the velocity of the tip mass
which collides with the table: its value after impact is calculated using the elementary impact
law

v*° = e(vT~Vio) + VT I
where e is the coefficient of restitution, v10 and vT represent the velocity of the end mass
and moving table, respectively, and the instants just before and just after impact are i
represented by the symbols" -" and "+", respectively. A numerical code based on Newton's
method is used to find the time AtI between impact i and a +1.

A naive implementation of the impact Poincar6 map algorithm is very efficient for orbits
with average impact time intervals which are not too small. However, in chaotic orbits, and
certain periodic orbits, sticking events can occur in which A t1 rapidly decreases by more than U
7 orders of magnitude. This causes a simple impact algorithm to fail since the maximum
prccision of the Newton's method code will be exceeded. To compensate for this, the
simulation assumes that values of AtI. below 10-7 indicate that the tip mass has stuck on the
moving table (i.e., v 0- 1:r = 0). Newton's method is then used to solve for the time when U

I
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Cusumano and Ba4 Period-Infinity Periodic Motions... (Abstract)

I the reaction force between the tip mass and table passes through zero (decreasing), thus
indicating that the tip and table will lose contact.

Sticking events are an essential aspect of impact oscillator dynamics, not ad hoc assumptions
use to make the simulations function properly. Defining the ratio between successive impact
time intervals to be

=At 1

one sees (Fig. 3) that Ii converges to a value less than 1 during a sticking event (until the
precision of the calculation is exceeded, after about 90 impacts). This indicates that the ratio
test is satisfied and thus E Ati < co; that is, sticking occurs in finite time. Most interesting
is the indication that Ii -' e as i - co, just as occurs for the elementary example of a ball

I bouncing on a stationary surface. Thus, this study demonstrates that periodic solutions in
which sticking occurs possess an infinite number of impacts over a finite number of table
periods and are thus of type period- co, in.
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Fig. 1 Impact map bifurcation diagram over whole
natural frequency range of the system
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3 CONTINUOUS CONTACT FORCE MODELS

FOR IMPACT ANALYSIS IN MULTIBODY SYSTEMS

3 Hamid M. Lankarani
Mechanical Engineering Department

The Wichita State University
Wichita, KS 67208

Parviz E. Nikravesh
Department of Aerospace and Mechanical Engineering

University of Arizona
Tucson, AZ 85721

ABSTRACT

3 For the impact analysis between bodies of a multibody system, two types of

analyses are normally considered: piecewise or continuous. In a piecewise

3 analysis, the equations of motion are integrated until the moment of contact, then

the change in the system momenta and, hence, the discontinuities in the velocities

are determined. After updating the velocities, the integration of the equations of

3 motion is resumed. In a continuous analysis, however, the integration of the

equations of motion is not interrupted during the period of contact, therefore, a

3 model for evaluating the contact force is required. In this paper, two such

continuous contact force models are presented. Both models are of Hertzian nature

and are based upon the direct central-impact of two solid particles.

3 When the local plasticity effects are the dominant factor accounting for the

dissipation of energy in impact (at high impact velocities), a Hertzian contact force

3 model with permanent indentation is constructed. Utilizing energy and momentum

considerations, the unknown parameters in the model in terms of a given

I coefficient of restitution and velocities before impact are analytically evaluated.

The equations of motion of the two solids are then integrated forward in time as a

function of the variation of the contact force during the contact period.

I
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At lower impact velocities, the energy dissipation during impact is mostly due

to material damping and not permanent indentation. Based on the general trend of I
the Hertz contact law, a hysteresis damping function is encorporated into the

model which represents the dissipated energy during impact. The unknown

parameters in the model are again determined in terms of a given coefficient of

restitution, and the validity of the model is established.

The two particle models are generalized to the impact analysis between two

bodies of a multibody system. The concept of effective mass is presented in order

to compensate for the effects of joint forces. The impact analysis for several I
examples are presented and the results are compared.

I
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I
A Singular Perturbation Analysis of the

* Equations of Servo-Hydraulics

R. Scheidl

J. Kepler University, Linz, Austria

I Servohydraulic drive systems provide excellent dynamic capabilities and have a wide

range of applications (e.g.: in material testing machines, for the excitation in experimental

simulation of vehicle dynamics, as actuators in rolling mills, air-planes, etc.). Besides the

supply unit, which has to provide constant system pressure over the whole range of required

flow rates, such a system comprises typically (see fig. 1)

I - a servo valve,

- a hydraulic cylinder or a hydro motor, and

- a closed loop control system.

x .. dis~lace-

cylinder -- ment x-measured

m .. inertia " "

servo- /Y -,' control- +

valve -ui

p-system- x desired
I supply-pressureL

I L

A simple mathematical model of such a hydraulic drive consists of a system of ODE's.

The pressures in both chambers of the cylinder, the displacement of the piston (see fig. 1),

and variables of the control unit are used as dependent variables. The equations are strongly

I nonlinear and singularly perturbed- The nonlinearity arises by the pressure loss in the servo

valve, which is quadratic with respect to the flow rate. The singular perturbation is due to the

I



m
low compressibility of the hydraulic fluid and occurs in the evolution equations for the

pressures.

The mathematical investigation found in the engineering litarture is characterized by the

application of linear methods of control theory, mainly the Laplace transform method.

In the current analysis, which is restricted to periodic movements of the piston, singular

perturbation techniques are applied, to obtain a good understanding of the qualitative features

of the system behaviour without prior simplifications like linearization. Numerical

investigations can be performed, if solvers for stiff systems are used. But besides the problem

of time consuming calculations, which occur particularly, if the frequency of the given

movement of the piston is relatively low, they cannot provide compact analytical formulas for

design purposes, which are extremely helpful in practice.

A two step approach is made. In the first, the system is analysed without a closed loop

control, thus the valve opening is a given periodic function of time. This should provide the

understanding of the qualitative behaviour of the controlled system. The main question is, I
whether internal layers do occur at those instances, when the valve passes through its zero

position. The reduced system (compressibility of the fluid set to zero) is singular at this zero

valve opening position. A solution is given by a power series expansion and it turns out, that

for practical applications, internal layers do not occur. This is bacause of the limited response

time of currently available servo valves. I
In a second step a closed loop control is added. It is shown, that in contrast to 3

competetive drive systems (e.g. electric drives), where a force or torque and consequently an

accelleration is the controller output, for the hydraulic system the speed is the directly

regulated quantity. This advantage in the order of the controlled quantity explains, why a

rather simple control of P-response type gives satisfactory results in many practical

applications. n

Throughout the analysis the mathematical manipulation language MAPLE V is used, to

perform series expansions, to solve differential equations, and to produce graphical n

representation of results obtained.
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Convergence and Asymptotic Stability of Hamiltonian
Control Systems

Part (I): High Gain Tracking Control

I A.J. Kurdila and F. Narcowich
Texas A&M University

College Station, Texas 77843

U ABSTRACT

SI Asymptotic stability of high gain control schemes have been dervived for linear systems, as well
as nonlinear, first order systems that are asymptotically stable in the first approximation. This paper

lI presents sufficient conditions for the asymptotic stability of output feedback for a class of nonlinear
Hamiltonian control systems. In this paper it is shown that rigorous upper bounds can be found for
the norm of the error in tracking control in terms of a gain normalization factor. Output feedback

I control having a magnitude of O(1/8) guarantees that the tracking error, and its derivatives, re-
main in a hyperellipsoid in phase space having a diameter of O(8) for the class of systems consid-
ered. In addition, the asymptotic convergence, i.e. approximate controllability, of the method isI investigated using LaSalle's invariance principle. It is shown that as t -4 -, the tracking error, and
its derivative, approaches the surface of the hyperellipsoid.The theoretical results presented in this
paper are validated in a numerical example. Furthermore, the results presented herein form the ba-

i sis for adaptive Hamiltonian control methods presented in part (11) of the paper.

I
I
I



I
I

(1) INTRODUCTION

The study of control design methodologies for nonlinear dynamical systems has become the focus I
of some of the most significant research in control theory over the past few years. One recent ap-
proach for the design of controllers for nonlinear systems employs Lie Algebraic techniques to
achieve canonical nonlinear systems for which control design is simpler. Overviews of Lie alge-
braic approach are given in [4,5,7], while typical specific applications of the method are described
in [4]. The advantages to the Lie Algebraic formalism are numerous:

(i) It has a strong foundation in geometric methods that offer valuable insight to the for-
mulation.

(ii) The method is general, and defines controllability and observability concepts for non-
linear systems that are natural extensions of the more common definitions for linear
systems.

(iii) The theory enables explicit formula to be derived to achieve exact linearization, as-
ymptotic stabilization and output tracking for some classes of nonlinear systems.

Still, there are attributes of the approach that make it difficult to use for systems with many degrees
of freedom. For example, the calculation of relative degree or linearizing observers [7], can be al-
gebraically intractable. Furthermore, for mechanical or structural systems, the equations of motion
appear most naturally as Lagrangian, second order systems of ordinary differential equations, or
via a hamiltonian formulation. The former of these formulations must be converted to first order
form to employ most of the more common Lie Algebraic methods directly, while the second class nhas additional symplectic structure.

For these reasons, this paper explores nonlinear control using a second popular approach: The
Hamiltonian control formulation [10-13]. While the Lie Algebraic methods and Hamiltonian for- imulations are hardly mutually exclusive (for example one can see [7] or [14]) Hamiltonian formu-

lations can have two distinct advantages

(i) The additional structure of Hamiltonian mechanics enables additional, sharper results
in many cases.

(ii) The equations governing mechanical and structural systems are relatively easily ob- I
tained in Hamiltonian formulations.

This paper shows that an asymptotically stable output tracking control can be constructed for a i
class of nonlinear, multi-input/multi-output Hamiltonian control systems. The approach discussed
herein generalizes the class of feedback considered in [7,14] for Hamiltonian systems. It is shown
that for the class of systems considered a feedback control having a magnitude of 0 (-) constrain-
sthe tracking error to a ball of radius 0 (E) in phase space. In this sense, theorem (3.1) of this paper
can be construed as a high gain output tracking theorem analagous to that in [4] for linear and non-
linear systems that are asymptotically stable in the first approximation. Finally, the approach taken
in this paper characterizes the o-limit set of the closed loop tracking error for cases in which the
internal energy approaches a constant. The c-limit set is contained in a hyperellipsoid in phase i
space of diameter 0 (e (H. (o) - H-,))) where H-t is the internal energy.

I



NEW COMPOSITE ADAPTIVE CONTROL ALGORITHM OF RIGID ROBOTS

Stotsky A.A.

Institute for Problems of Mechanical Engineering , Academy of

Sciences of Russia

Lensoveta st. 57-32, St. Petersburg, 196143. Russia.
e-mail: alex@ics .spb. su

The convergence rate and robust properties of the existing

adaptive control schemes of rigid robots can be enhanced by

improving the identifiability of adaptive algorithms. We present a

new adaptive control algorithm of rigid robots which provides the

global exponential convergence of the estimated parameters to their

true values for persistently exciting desired trajectories . Our

control law does not require acceleration measurements nor does it

require the filtering of the velocity signal. New form of the

Lyapunov function was found . The results are confirmed by

simulation of two link planar manipulator

Based on Lagrangian formulation , the motion equations of rigid

f-link manipulator are as follows

M(q)q + C(qq)q + G(q) = T (1)
T

where q E R' is the vector of joint coordinates , M(q)= M(q) > 0 is

the inertia matrix , c(q,4) is the matrix of Coriolis and

centrifugal torques , G(q) is the vector of the gravitational

torques , T E R" is the vector of input torques

Three specific properties of the equation (1) we shall use for

algorithms design . The first property is following : both the

inertia matrix and the inverse of the inertia matrix have the upper

bounds ( 1I1n < M(q) <, a2I1. n 9,O2>0 for all q E R" ). Secondly , in
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the case of proper definition of the matrix C(q,q) the matrix i(q) -

2 C(q,q) is skew-symmetric matrix (Koditschek . 1984) The third

property is linear parameterization property . i.e. the manipulator 3
dynamics is linear in terms of suitably selected set of equivalent

manipulator parameters (Slotine and Li .1989).

Our problem is following : to find the control and adaptation

laws for the manipulator with unknown parameters such that to

achieve the next control aim 3
lim q(t)=O Jrm q(t)= 0 , (2)
t -'') t-'-00

where q(t)=q(t)-qa(t), q(t) M R is the desired trajectory

Define the error vector function S(t) =q(U) + A q(t), where A =A

Set the secondary control aim 1
Jrn s(t)=O(3
t- ý.-o

Consider the following control law I
T = Y(q,4,4 r ,,s) e - a s - K(q,q)s . (4)

where A(q,4r)r 4 = Y(4,4,q- ) - Y(qqs.) ,Y(4,4jqr,) ea
A 3

(q) + C(q,4) 4,+ G(q), Y,(q,4,s) e (M(q) -C(q,4) + a (q))
A

where M(q), C(q,4), M(q) G(q) are the estimates of M(q), C(q,q1),M(q)

matrices and vector G(q) respectively . 4r(t)= 4 d(t)- A q(t) Is thel

virtual desired trajector7 , E E R' is the vector of adjustable

parameters, K(q,4) >, -1\2 i(q) for all q. 4 E R7 and CL >, 3/2 C02. I
a0 is a positive number

e r VT * , *, Ie = - P(t)[ Y(qqqrqr,S) s(t) - co•p(t)s(t)], (5) U
I
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where an m x n matrix ((t) , S(t) E R" and an M M m ga4n matri=

P(t) ar-e adjusted as follows

ýt - cLop(t) + Y (q,q,q,-,q,,s) ,(6)

ý(t)= - aoe(t)- a s - K(q,q) s + (7)

(P(t)Tr(t)y T (q,q, Sci,s)s - aCOcp(t)Tf(t)(P(t) E(t) ,
a-1= Q0 ( (T/2 - a0 X(t)I'-,'2 ,r(o)=-P(O) T > 0 , I(O), k 0o

X(t)= X. o (1 - nPg/k0 ), (8)

where , X(t) is a variable nonnegative forgetting factor, AO and R
are two positive constants. It should be noted that least-squares

3 gain update (8) with time-varying forgetting factor was proposed by

Slotine and Li (1989) and called "bounded-gain forgetting method".

With the preceding control structure we can prove the following

Theorem 1 . Consider the system (1). (4) with adjustment law

(5)-(8) .If all desired trajectories are bounded then

i) the secondary control aim (3) is achieved

the main control aim (2) is achieved

and all trajectories of the system remain bounded

ii) If. in addition , (P(t) is persistently exciting

than the tracking errors and the estimation errors exponentially

converge to zero .

The proof is based on the Lyapunov function
=1/2 STM(q)s + 1/2 q M(q)s - E "T 2 + 1/2 j e 2

V 1 / 8 1 2 1 ( + / 2 1 e I ( t 3 l

where e= 8 - 0 , is the vector of true parameters
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Slewing Dynamics and Control of the Space
Station Based Mobile Servicing System

V.J. Modi* and A. Ng**

Dept. of Mechanical Engineering
University of British Columbia
Vancouver, B.C., Canada V6T 1Z4

A relatively general formulation for studying the i
nonlinear dynamics and control of spacecraft with interconnected
flexible members in a tree-type topology is developed. The dis-
tinctive features of the formulation include the following: (i) it is i
applicable to a large class of present and future spacecraft with
flexible beam and plate type appendages, arbitrary in number
and orientation; (ii) the members are free to undergo predefined I
slewing maneuvers to facilitate modelling of sun tracking solar
panels or large angle maneuvers of space based robots. Besides,
the environmental disturbances due to thermal deformations of
flexible members are incorporated in the study; (iii) the govern-
ing equations of motion are highly nonlinear, nonautonomous
and coupled. They are programmed in a modular fashion to
help isolate the effects of flexibility, librational motion, thermal
deformation, slewing maneuver, shifting center of mass, higher
modes, initial condition, etc.

Next, versatility of the general formulation is illustrated through
the parametric analysis of the Mobile Servicing System (MSS)
to be developed by Canada for operation on the Space Station.
The MSS is essentially a two link manipulator attached to a
mobile base which traverses along the station power boom. The I
functions of the MSS would not be limited to satellite retrieval
and release. Instead it is expected to be the workhorse for the
station construction, maintenance, and operations. The MSS,
being flexible in the links as well as the joints, is an extremely
complicated system to study. The objective here is to assess
pointing errors arising from inplane and out-of-plane maneuvers
of the robotic arms. Finally, the attention is focused on de-
velopment of control strategies to restore equilibrium. To that
end, feasibility of the nonlinear control based on the Feedback
Linearization Technique (FLT) is explored. Results show the
procedure to be quite promising in controlling the attitude of
the space station over a range of disturbances arising from MSS
maneuvers.

* Professor, Fellow AAS, AIAA, A-5AE
** Graduate Research Fellow 3
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EFFECT OF THE LINEARIZATION OF THE i
CORIOLIS AND CENTRIFUGAL FORCES ON

THE FEEDFORWARD CONTROL LAW OF FLEXIBLE i
MECHANICAL SYSTEMS

i
I
I

M. Gofron I
A. Shabana

Department of Mechanical Engineering
University of Illinois at Chicago

P. 0. Box 4348
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ABSTRACT

The inverse dynamics problem for articulated structural systems such as
robotic manipulators is the problem of the determination of the joint actua-
tor forces and motor torques such that the system components follow specified
trajectories. In many investigations, the open loop control law was established
using an inverse dynamics procedure in which the centrifugal and Coriolis inertia
forces are linearized such that these forces in the flexible manipulator model are
the same as those in the rigid body model. In some other investigations, the
effect of the nonlinear centrifugal and Coriolis forces is neglected in the analysis
and control system design of articulated structural systems. It is the objective of3 this investigation to study the effect of linearization of the centrifugal and Cori-
olis forces on the nonlinear dynamics of constrained flexible mechanical systems.
The virtual work of the inertia forces is used to define the complete nonlinear
centrifugal and Coriolis force model. This nonlinear model that depends on the
rate of the finite rotation and the elastic deformation of the deformable bodies
is used to obtain the solution of the inverse dynamics problems, thus defining
the joint torques that produce the desired motion trajectories. The effect of the
linearization of the centrifugal and Coriolis forces on the obtained feedforward
control law is examined numerically using different sampling rates and differ-
ent number of vibration modes. The results presented in this investigation is
obtained using a slider crank mechanism with a flexible connecting rod.I
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TWO-TO-ONE INTERNAL RESONANCE IN SUSPENDED ELASTIC CABLES

Christopher L. Lee
Graduate Student Research Assistant

Noel C. Perkins
Assistant Professor

Department of Mechanical Engineering and Applied Mechanics
University of Michigan

Ann Arbor, MI 48109-2125

this study examines the near-resonant response of suspended, elastic cables driven
by planar excitation in the presence of a two-to-one internal resonance. A geometrically
nonlinear continuum cable model is presented which describes three-dimensional response.
An asymptotic form of the model, representing suspensions with small equilibrium curva-
ture (sag) and horizontal supports, is discretized using the Galerkin method. The resulting
two-degree-of-freedom discrete model is used to examine the coupling between a symmetric
in-plane mode and an out-of-plane mode. These modes are coupled through quadratic and
cubic nonlinearities which orig- ate from nonlinear cable stretching. Two-to-one internal
resonances naturally arise for specific sag levels where the natural frequency of the in-
plane mode is, approximately, twice that of the out-of-p1 .ane mode. Planar and non-planar
response of the cable is examined for conditions near primary resonance of the in-plane
mode.

SI A perturbation analysis using a version of the method of multiple scales is carried
out to second nonlinear order to examine the existence and stability of weakly nonlinear
periodic motions. At the first nonlinear order, the discrete model is shown to possess the
particular quadratic nonlinear terms that lead to saturation. As shown in Figure l(a), the
directly excited mode (a,) saturates beyond the excitation amplitude, F = 5.22 x 10'. In
the excitation range, 5.22 x 10' < F <7.17 x 10-4, two stable periodic responses co-exist:
one a planar (a, only) response and the other a coupled response.

3 The analysis is then extended to second nonlinear order to capture the additional ef-
"fects of the cubic nonlinearities and to include higher order corrections due to the quadratic
nonlinearities. Figure 1(b) illustrates that the saturation phenomena is disrupted and that
higher order effects may qualitatively alter the nature of the steady state response. Here,
a, never saturates but monotonically increases with increasing F. Furthermore, the higher

* order corrections split the (formerly degenerate) stable and unstable a, solution branches

I!
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in the muti-response region.

The accuracy of the higher order solutions are verified by comparison to results ob- i
tained by numerically integrating the equations of motion (diamonds).
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TRANSIENT VIBRATIONS AND CONTROL OF A TAUT INCLINED CABLE

WITH A RIDING ACCELERATING MASS

by

Iradj Tadjbakhshl and Yi-Ming Wang2

i ABSTRACT

3 The dynamics and the numerical solution for vibrations of a taut inclined cable and

the motion of a riding accelerating mass is developed. The moving mass is a trolley that is

II accelerated by a solid fuel racket down the inclined cable to very high velocities and is

aerodynamically brought to a hault. The thrust of the rocket is tangential to the deformed

shape of the cable.

The mechanics of the problem is Newtonian. Method of analysis consists of small

deformations superimposed on the static catenary state. The problem is nonlinear due to

convective acceleration interactions of the moving mass and the cable as well as the

presence of friction.

To reduce amplitudes of vibrations in the cable the method of vibrational control is

I employed. According to this method the tension in the cable is varied by sinusoidal

increment controlled at one end. The amplitude and the frequency of the incremental

II tension is adjusted in order to reduce the level of response.

IProfessor, Department of Civil and Environmental Engineering
Rensselaer Polytechnic Institute, Troy, Ny 12180-3590

2Graduate Student, Department of Civil and Environmental Engineering
Rensselaer Polytechnic Institute, Troy, NY 12180-3590
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TRANSIENT VIBRATIONS AND CONTROL OF A TAUT INCLINED CABLE

WITH A RIDING ACCELERATING MASS i

Numerical solution uses Galerkin's procedure to remove spatial dependence and to

reduce the problem to a nonlinear finite-dimensional state-space representation which is 3
solved as as an initial value problem. The results include the shape of the cable at any

instant and the kink angle which is the angle between the tangents to the cable behind and 3
ahead of the trolley.
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Modal Interactions in a Parametrically and Externally Excited String

S. A. Nayfeh, A. H. Nayfeb, and D.T. Mook
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, VA 24060

In this paper, we present theoretical and experimental results for a stretched string subjected to a
planar simple-harmonic excitation at one of its ends. A schematic diagram of the experimental setup is
shown in Figure 1. The shaker is oriented to provide an excitation with components both in the direction
of and transverse to the axis of the string in order to generate a combination of parametric and external
excitations.

It has long been known that under certain conditions a string subjected to a transverse planar
force will whirl like a jump rope [1]. The reported whirling motions are a result of the nonlinear
coupling between the in-plane and out-of-plane modes of the string due to the variation in the tension in
the string as it deflects. Several recent studies have focused on quasiperiodic and chaotically-modulated
motions which may occur as the string whirls (2]-[5]. None of these studies, however, include the effects
of a parametric excitation.

The transverse motion of the string is governed by two nonlinear coupled partial-differential
equations [6]. We apply the method of multiple scales directly to these governing equations and their
boundary conditions to obtain a set of nonlinear coupled ordinary-differential equations governing the
amplitudes and phases of each of the in-plane and out-of-plane modes of the string. We show that when
the parametric excitation is set to zero only the in-plane and out-of-plane modes at the frequency of the
excitation have nontrivial long-time behavior.

When the external excitation is set to zero, only modes at one-half the excitation frequency can
be excited. If the excitation frequency is near the natural frequency of an even-numbered mode, the
parametric excitation can excite the mode at half that frequency whereas if the excitation frequency is
near that of an odd-numbered mode, no modes will be excited. When both the parametric and external
excitations are present and the excitation frequency is near the natural frequency of an even-numbered
mode, the modes at half the frequency of excitation as well those at the frequency of excitation can be
excited.

With the parametric excitation set to zero, our analysis predicts that periodic whirling motions
can occur. This is confirmed experimentally and a typical periodic whirling motion is shown in Figure 2.
A linear analysis of the stability of this solution shows that as the frequency of excitation is varied, the
periodic whirling motion may become unstable, giving rise to complicated modulated motions. These
results are in agreement with those in references [1] through [5].

A combination of parametric and external excitations can lead to whirling motions where modes
at the excitation frequency as well as modes at half the excitation frequency can be excited. In this case,
periodic whirling motions appear with a 'figure 8' shape as shown in Figure 3. Under certain conditions,
these motions may also lose stability giving rise to complicated modulated motions. The experimental
results are in good agreement with the theory.
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BEHAVIOR OF A CRACKED ROTATING SHAFT

DURING PASSAGE THROUGH A CRITICAL SPEED

R. H. ANDRUET and R. H. PLAUT

The Charles E. Via Jr. Department of Civil Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061-0105

There has been extensive research on the vibrational behavior of cracked

shafts and the use of response characteristics to detect cracks (e.g., see the reference

lists in Wauer [1] and Collins et aL [2]). Most of this previous work involved shafts

rotating at constant angular speed, often focusing on the changes of the natural

frequencies or modes. However, Wang et al. [3] and Bently and Thomson [4] noted

that it is easier to detect cracks during a start-up or run-down process than at a

steady speed. According to Nilsson [5], cracks are usually more evident when a

rotor passes through a resonance than under normal operation. Vibration

monitoring during run-down is sometimes used in an attempt to detect cracks, but

research on transient responses of cracked shafts has been limited.

In the present study, transient responses of a horizontal, simply supported,

rotating shaft are studied analytically. Euler-Bernoulli theory is applied. Torsional

and longitudinal vibrations are neglected, whereas forces due to eccentricity, gravity,

and internal and external damping are included. The shaft contains a single

transverse crack that is assumed to be either completely open or completely closed

at any given time, depending on the curvature of the shaft at the cross section

containing the crack. Results for this breathing crack are compared to those for a

crack that is always open and to those for an uncracked shaft.



I
3

The governing equations of motion are bilinear. Galerkin's method is 3
utilized with five-term approximations for the two displacement functions, and the

resulting equations are integrated numerically. Natural frequencies and critical 3
speeds are determined for the unforced, undamped shaft with an open crack and

with no crack. Then time histories of the response are computed when the shaft is I
accelerated or decelerated past the fundamental critical speed at a constant rate. 3
The maximum response is determined, and the effects of the acceleration and

deceleration rate, crack depth, crack position along the shaft, and eccentricity angle 3
(with respect to the crack face) are investigated. I
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Chaotic Motions and Fault Detection
1 in a Cracked Rotor
I

P.C. M iller, J. Bajkowski, D. S*ffker
I Department of Safety Control Engineering

University of Wuppertal, Germany

I
I A detailed study of the vibrational behaviour of cracked rotating shafts is an important

problem for engineers working in dynamics of machines. The cracked mechanical system

3 is described by

M + Di + Kz = g(t) + N,,h(z(t)) (1)

I where z is the displacement vector, M,DK are mass, damping and stiffness matrices,

3 g(t) is a vector of unbalances, N,, is an input matrix of nonlinearities and h is a vector

of disturbances caused by the crack, which describes the change in stiffness coefficients.

3 So the system becomes one that is parameter excited and nonlinear (with discontinuieties

caused by transitions between motion without crack and motion with crack).

I In this paper two kinds of problems are considered:

3 1) Vibrational behaviour of the cracked turbo rotor depending on the parameters, i.e. the

crack coefficient and the damping coefficient.I
2) A new observer based method for detection of cracks in turbo rotors.

I A) Depending on the system parameters. i.e. crack depth or damping coefficients, different

3 types of motion are obtained: periodic, almost-periodic, sub- or ultraharmonic, and even

chaotic ones. Several quantitative and qualitative measures for the characterization of

3 attractors exist, e.g. such of phase plane plots, FFT-analysis, different kinds of dimensions

and entropies. Lyapunov exponents are chosen here to classify the system behaviour. In
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the case of single time series only the greatest Lyapunov exponent is calculated. To

obtain the spectrum of Lyapunov exponents from differential equations (1) the linearized 3
equations are needed. It is shown that the general method can be applied if some care is

devoted to the handling of the discontinuities. These equations have to be supplemented I
with transition function conditions, and then allow one to determine the spectrum of

Lyapunov exponents in the case of nonlinear systems with discontinuities.

B) The clear relation between shaft cracks in turbo rotors and vibrational phenomena I
measured in bearings can be established by model- based methods very well. Here the

new method [1,2] based on the theory of disturbance rejection control, extended for non-

linear systems and applied to a turbo rotor is presented as well. In this way the crack 3
is interpreted as an external disturbance. Due to the theory of estimating unknown di-

sturbances of a dynamic system, simple measurements of displacements and/or velocities 3
- obtained from simulation or experiment - are used to reconstruct these additional time

signals by state observers to obtain estimates of the non- linear effects. The state observer

is based on the known part of the vibration system and a linear fictitious model, which 3
approximates the crack. By calculating the relative crack compliance as the ratio of ad-

ditional compliance caused by the crack and undamaged compliance, a clear statement is 3
possible about the opening and closing, and therefore for the existence of the crack, and

about the crack depth. I
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An efficient algorithm for elasto-viscoplastic vibrations
I of multi-layered composite beams using second-order

theory.

W. Brunner, Ass. Prof.,3 H. lrschik , Prof. of Technical Mechanics,
Johannes-Kepler-University of Linz,

SAbstract: A-4040 Linz, Austria.

3 Engineering structures composed of layers are characterized by both

light weight and high strength. This is due to modern technologies,

3 allowing a problem-oriented choice of the material properties in the

different layers. The present paper is concerned with a time-domain al-

I gorithm for plane non-linear flexural vibrations of composite beams,

which are driven into the inelastic range by severe transverse loadings.

For a straight-forward structural analysis, the non-classical coupling

3 between flexure and stretching due to an unsymmetric combination of

the layers in the thickness-direction is resolved by a proper choice of

I the position of the beam axis. The influence of an axial static preload is

considered in the sense of the quasi-linear second-order theory of

structures, namely by applying the equations of momentum to the de-

3 formed beam but using linearized geometric relations. The main goal of

the paper is the appropriate incorporation of viscoplastic strains into

3 such a second-order theory of composite beam vibrations. This is achie-

ved by means of an efficient semi-analytic algorithm: The inelastic parts

of strain are treated as additional sources of selfstress in the linear

3 elastic background-structure, driving the elastic response into the

inelastic one. Those sources act likewise to a fictitious time-dependent

3 thermal loading in the associated linear elastic composite beam. The ef-

ficiency of this exact formulation lies in the fact that well-known linear
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solution techniques can be used in their most powerful form, because

the stiffnesses of the associated linear beam are time-invariant. In the

present paper, the second-order transfer-matrix technique in combina- 3
tion with modal analysis is adopted for multi-span beams. Accelerated

convergence of modal expansions is obtained by means of a splitting of I
the total solution into a quasi-static and a dynamic part. The fictitious

thermal loading, which occurs in this analytic formulation as an additio-

nal driving term, is calculated in a time-stepping procedure as the 3
inelastic parts of strain using the local non-line'r material laws of the

different layers. Any non-linear numerical solution routine may be 3
used, which is appropriate for the specific mathematical type of the

material laws. Having calculated the inelastic strain increments, the in- I
crements of the overall beam variables are obtained using the above 3
dynamic version of the transfer-matrix technique. For an efficient appli-

cation of this scheme, the effects of the fictitious thermal loading upon

the dynamic behaviour are evaluated in the sense of the dynamic influ-

ence function method at once before starting the time-stepping proce- I
dure. Furthermore, the time-stepping is performed by using an initial-

value storage technique for the increments of the modal coordinates in

order to hold the numerical effort equally low during the course of cal-

culations. The procedure is demonstrated for layered beams with over-

hang and axial compression under the action of a blast-type transverse I
loading. Layers with different material behaviour according to the ver-

satile elasto-viscoplastic formulation of Perzyna are considered. The ge-

neralized mid-point rule is used as implicit algorithm for the calculaton 3
of the viscoplastic strains. Results of the semi-analytic procedure are

presented in non-dimensional form as a parameter study. 3
I



SINGULARITY-FREE AUGMENTED LAGRANGIAN ALGORITHMS

FOR CONSTRAINED MULTIBODY DYNAMICS
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Department of Mechanical Engineering

University of California
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and
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Manuel de Lardizbal 15,
20009 San Sebastiin, SPAIN.

ABSTRACT

After a general review of the methods currently available for the dynamics of constrained

multibodies in the context of numerical efficiency and ability to solve the differential equations

of motion in singular positions, we examine the acceleration based augmented Lagrangian

formulations, and propose a new one for holonomic and non-holonomic systems that is based

on the canonical equations of Hamilton. This new one proofs to be more stable and accurate

than the acceleration based counterpart under repetitive singular positions. The proposed

algorithms are numerically efficient, can use standard conditionally stable numerical integrators

and do not fail in singular positions, as the classical formulations do. The reason for the
numerical efficiency and better behavior under singularities relies on the fact that the leading

matrix of the resultant system of ODEs is sparse, symmetric, positive definite, and its rank is

independent of that of the jacobian of the constraints equations. The latter fact makes the

proposed method particularly suitable for singular configurations.
In the introduction we review all the current approaches for multibody dynamics that have

been proposed in the vaious fields such as aerospace, robotics and mechanisms. We categorize

the methods into those that use recursi!ve procedures, those that use a minimum set of
independent coordinates, global methods based on the Lagrange's multipliers approach and

those arising from penalty formulations. As background, section 2 describes the classical

Lagrange's multipliers formulation and shows how the Hamiltonian formulation leads to better

behaved differential algebraic equations than those obtained from the acceleration based
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formulation. The same section also describes why the classical formulations fail in singular

positions. In section 3, we describe the acceleration based augmented Lagrangian formulation 3
and propose the algorithm ALFI for the integration of the equations of motion of multibodies

in global coordinates.

In section 4 we propose a new augmented Lagrangian formulation that is based on the I
canonical equations of Hamilton. To this end we define a modified Hamiltonian formulation

which is derived by adding to the Lagranges's multipliers terms three penalty terms: a fictitious 3
potential, a set of Rayleigh's dissipating forces and a fictitious kinetic energy term. The

resulting equations are subsequently modified to include an integral term that eliminates the 3
numerical stiffness of the original system. A new algorithm ALF2 is then proposed. The

numerical results of section 6 clearly show that ALF2 leads to a more stable integration than

ALF 1. We extend this method to non-holonomic constraint conditions in section 5.

The paper ends with the following conclusions:

"* The method is very simple to implement and can use standard off the shelf

conditionally stable numerical integrators such as those available in commercial

mathematical libraries.

"* The fact that the leading matrix of the equations of motion is always positive definite,

symmetric and sparse, allows for a very efficient solution of the equations without the

use of pivoting. This applies even in the presence of redundant constraints and

coordinates, and most importantly in singular positions. 3
"• Although the method is non-recursive, the leading matrix is strongly banded and

therefore the number of operations needed to solve the systems of equations becomes 3
of order n.

"* The Lagrange multipliers (reaction forces at the constraints) are obtained without

having to integrate additional equations.
"• The acceleration based formulation ALFM shows numerical inestabilities under

repetitive singular positions that are due to the accumulation of constraint errors. These 3
can be circumvented with tighter tolerances and incresead values in the frequency of the

dynamical penalty system at the expense of additional computational cost.

"* The canonically based method ALF2 is more robust and has not shown pathological

behavior in any of our simulations. These authors do not know of any other algorithm

that can simulate the motion of a multibody undergoing repetitive singular positions as

ALF2 does. 3
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CONSTRAINED OPTIMIZATION OF SPACE FRAME STRUCTURES

by Jaroslaw A. Czyz* and Stanislaw A. Lukasiewicz**

ABSTRACT

The paper presents optimization methodology for the design of maximum multiple

natural frequency space frames subjected to constant volume constrain.

The cross-section of the frame members is assumed rectangular, however, any cross-

section defined by two parameters can be considered. Limits for minimum and maximum

size are assumed and the constraints for maximum ratio of two dimensions of each cross-

section are imposed. The optimization methodology was implemented in automated

structural optimization computer code which was used to solve several space frame

problems. Numerical results obtained for the selected example problems indicated that the

formulation of optimality conditions utilizing separation of bending energy into two

orthogonal planes accelerates the convergence of the optimization process.

Structural optimization of three-dimensional space frame type structures called

considerable attention of the researchers in recent years. A major effort has been

concentrated on the space frame optimization subjected to static and unimodal dynamic

constraints.

The present paper is devoted to the optimization of the frame structures made of

beams of rectangular cross-sections. The dimensions of the cross-sections of the beams are ay,,a

where i = 1,... n, and n - is the number of optimized elements. These dimensions are the

optimization variables. The beam elements of the structure have a fixed orientation in space

and do not change that orientation during the optimization. The optimized structure can

consist of other elements, such as, elastic supports, concentrated masses, and elements of
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constant parameters. The optimization is carried out to find the distribution of geometrical 3
parameters • (a;', a,2,... a,") and = (a1, a2 ... a,"), for which the fundamental natural

frequency reaches the maximum value, while the volume of the structure remains constant.

This problem is equivalent to minimization of weight of a frame subjected to multimodal I

frequency constraints. To find a solution satisfactory from the technical point of view some 3
additional conditions are imposed. It is assumed that the dimensions of the frame cross-

sections aý (/ = y or ý =z) are between the limits a. < a' < a, Moreover, for each

cross-section the ratios ayla' and a'a' of one dimension to the other one should not exceed

a given value r__ > 1. These constraints are also necessary because of the limitations of

the validity of the beam theory. U
The maximized fundamental frequency can be multiple, ie., w, = C02 = ... (6, where 3

wi - is the "ith" natural frequency of the frame, m-the multiplicity of the fundamental

frequency. It is expected that if the ratio r. is not close to 1, m is at least equal 2 for the

optimal structure because of the fact that the ratio of the moments of the inertia of the I

cross-section of the beam with respect to the y and z axis is variable.

The solution of the stated problem is achieved by application of the optimality

criterion method. An energetic approach to formulation of the optimality conditions allows I
to separate bending energy in two orthogonal planes of each element (along axis y and z.) 3
The implementation of that approach to the optimization algorithm improves its

convergence. The modality of the problem, i.e. the multiplicity of the fundamental frequency I
of the optimal structure is determined iteratively. Several examples of the solutions are 3
presented.
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Before any large structure can be deployed into space, ground modal testing must be

performed to determine the dynamic characteristics (i.e., frequencies, modes, and

damping) of the structure. These tests might conclude that certain unstable modes of

vibration are present and are undesirable for the structure's orbiting maneuvers. In this

case, active or passive control must be considered. When deciding where to place passive

dampers, their locations are usually assigned on the basis of skilled engineering insight.

This method of placement would hold when considering only a single mode of vibration in

a simple structure; however, when considering a cluster of modes in a complex structure it

is not so apparent where the optimal placement for the passive members should be located.

Using a combinatorial optimization approach has proven to have a high computation cost.

It then becomes necessary to use a heuristic-based technique that renders near-optimal

solutions at a low computation cost.

A study was performed on a two-dimensional twenty bay truss, where motion was

restricted to the horizontal plane. When a structure is spacially discrete and a finite number

of passive members are to be placed in the structure, an optimal solution can be obtained by

using a combinatorial optimization scheme. For the case presented in this study, over
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485,000 combinations would have to be calculated to obtain the optimal solution. To avoid

such a large amount of computations, a heuristic-based method was examined.

I
Simulated annealing, a modified iterative improvement algorithm, was used to find a near-

optimal solution in a more feasible manner. The simulated annealing algorithm developed 3
by Kirkpatrick et al was based on the analogy between the simulation of the annealing of

solids and the problem of solving large combinatorial problems. Simulated annealing I
allows non-improving solutions to be accepted based on a probability function. This

characteristic allows the algorithm to move away from any local optima, unlike the iterative

improvement method which has a tendency to get trapped at a local optima. 3
The control parameters that govern the simulated annealing algorithm were examined and I
the results are presented. In particular, the control parameter that allows the acceptance of

non-improving solutions was modified to enhance the performance of the algorithm.

Finally, the search space of the algorithm was restricted to study the effect on the solutions 3
obtained by simulated annealing. I
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Computation of Lyapunov-Floquet Transformation Matrices for General
Periodic Systems

J. S. Bibb and S. C. Sinha
Department of Mechanical Engineering

Auburn University, Alabama 36849U
EXTENDED ABSTRACT

Periodic systems are found in many practical applications such as stability of
structures subjected to periodic loading, stability of helicopter rotor blades in
forward flight, and control of periodic systems. The equations of motion ini general have periodic coefficients and are nonlinear. In many instances, the
stability and control problems may be studied via linear equations perturbed about
a periodic orbit. Bifurcation studies of the periodic orbit, however, can only beUI done through nonlinear equations of motion. Therefore, in general all such
problems lead to quasi-linear differential equations with periodic coefficients.

k(t)=A(t) x(t) + f(x,t) (1)

I where A(t) is T-periodic

It is well known that linear systems with periodic coefficients can be transformedto a time invariant form via the Lyapunov-Floquet transformation. Therefore the
above quasi-linear equations can be transformed to

( (t) =Cy(t) + L- 1 f(y, t) (2)

I where y(t) = L(t) x(t) and C is a time invariant matrix.

Thus, if the L(t) Lyapunov-Floquet transformation matrix (LFTM) could be
determined in a symbolic form, the bifurcation and control studies for equation (1)
can be reduced to the problem given by equation (2). This problem can be
analysed via several techniques available in the literature [1,21.

In order to find the LFTM, one must compute the state transistion matrix
associated with the linear part of equation (1) in a form suitable for algebraic



I

manipulations. This is only possible for a very special type of system called a
commutative system. For more general systems, it may be possible to employ the
perturbation and related methods. These methods, however, are inappropriate for
systems where the strained parameter is not small. Numerical techniques are of
course unsuitable for this purpose.

Very recently Sinha and Wu [3], and Sinha and Juneja [4] have explored the use
of Chebyshev polynomials in the solutions of linear periodic systems. The latter
authors have succeeded in computing the state transition matrix in symbolic form. I
In this study the approach used by Sinha and Juneja [4] is extended to computing
the Lyapunov-Floquet transformation matrix and the results are compared with the
exact results obtained for a commutative system.

PROPOSED SCHEME:

Consider

k(t) =A(t)x(t) (3)

I
where A(t) is a periodic matrix with period T. Following references [3] and [4],

A(t) and x(t) are expanded in terms of the shifted Chebyshev

polynomials T* (t) . Substituting these expansions in equation (3) and utilizing
tle proper set of initial conditions, an algebraic form of the state transition matrix

-D (t) is obtained where each element of 0 (t) is represented in terms of a set

of Chebyshev polynomials. Then 4 (t) is decomposed into a product of two I
matrices as

I
4(t) =L (t) e t  (4)

where L(t) is T-periodic and C is a constant matrix. L(t) and C are in general
complex. Floquet theory guarantees the existance of this decomposition, and I
further shows that using the following transformation

x(t) =L(t)y(t) (5) I
I

the original system of differential equations can be transformed to a system with
constant coefficients.

I



I (t) =C y) (6)

UI Sinha and Wu have already shown the computational effici -ncy of using Chebyshev
polynomials to find the state transition matrix for a given system with periodic
coefficients. The total scheme can be applied to a general system with periodic
coefficients to yield a system with a constant linear part and a time varying
nonlinear part. This facilitates the use of averaging methods and normal form
methods to arrive at a solution. The scheme can also be applied to control
problems with periodic coefficients to greatly simplify the system to yield a time
invariant system. Several applications of this scheme are demonstrated.
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I Whirling of a Forced Cantilevered Beam with Static

I Deflection: Passage through Resonance

I I-M. K. SHYU,

Taipei, TAIWAN

and

D. T. MOOK and R. H. PLAUT

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

I Non-stationary excitations of slender, elastic, cantilevered beams with equal
principal moments of inertia are considered. The excitation frequency is slowly
increased or decreased through a resonance of the first mode at a constant
rate. Three resonances are investigated: primary resonance, superharmonic
resonance of order two and subharmonic resonance of order two. After
application of Galerkin's method with three modes, the nonlinear,
nonstationary response of the first mode of the beam is determined by two
methods: integration of the modulation equations obtained from the method
of multiple scales, and direct numerical integration of the temporal equations
of motion. Time histories are presented and the effects of excitation amplitude,
rate of acceleration or deceleration through resonance, damping and initial
conditions of the disturbance on the maximum response are studied. The
effect of a persistent random disturbance is also examined. Although the
excitation acts in the vertical plane, whirlingq o'ctrs if the beam is subjected to
out-of-plane disturbances.
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Forced Oscillations of a Rotating Shaft with Nonlinear Spring I
Characteristics and Internal Damping

(Subharmonic Oscillation of Order 1/2 and Entrainment)

Yukio ISHIDA and Toshio YAMAMOTO
School of Engng.,Nagoya Universi ty,Furo-cho,Chikusa-ku,Nagoya,JAPAN. I

1. Introduction I
When an elastic rotating shaft is supported by ball bearings, various kinds of nonlinear

forced oscillation appear due to clearance in bearings and a self-excited oscillation appears
in the post-critical region due to internal damping which is caused by frictions between the Ishaft and the inner ring. An entrainment phenomenon in the neighborhood of a resonance point
of a sub-harmonic oscillation of order 1/2 of forward whirling mode is discussed.

2. Equations of Motion
An inclination motion of a rotor which is mounted at the center of an elastic shaft

is analyzed. The equations of motion in dimensionless form are expressed as follows"1 ':
+ +cO., +Do1+B,+N 9,F cos tI

8"-iiew, ÷+ c o+D&7 +Oy+No,=F sinw t
where Ox and 0, are the projections of an inclination angle 0 of the rotor on the xz -
and y z-planes in the rectangular coordinate system O- x y z whose z-axis coincides with
the bearing center line, ip (=IP/I) is a ratio of polar and diametral moments of inertia, I
w is the rotating speed, r is the dynamic unbalance, F=(l-i,) W 2 , c is the external
damping coefficient, D&. and D0 s are internal damping terms, No, and Noy are nonlinear
terms in restoring forces. The nonlinear terms are derived from the potential energy by( 21

Z 4

VNV(X, Y)= i~JXyj ZI3JX~y, j1_ __ _ __

ci"• . 1- o 2 ) i o -" "

Na,=.. V' No a .V,- 23

Internal damping terms are expressed as fol lows( 3 '

D _&.= D_,= (3)_ _ _r , /e ,2+ e = 0/ 2, + e ,2 + 0/ 22

The frequency equation for a system with no
damping and no nonlinearity is given by Pb

G (P) = +ipopp 2 = 0. (4) -'

Two roots P=Pr and Pb change as shown in Fig.l. 0 1 2 3 4 S
The cross point- of curve Pr and straight line p Rotating speed ' I
=+(1/2)w gives the resonance point of subharmonic
oscillation of order 1/2 of forward whirling mode. Fig.1 Campbell diagram

3. Theoretical Analysis =0o.3

3.1 A self-excited system with no nonlinearity in , =0.03 Approximate solution- r=0.2
restoring forces. (Na.=NY=0 ) .Numerical simulation

The solutions are written asfollows.
Of=Rpccos(orts(+t+Rt1A) RI

Oy=Rp sin(pr t + +)+Psin(w t +I3)A ( I A =0.I
The amplitude R=Rpo of !'ationary solution is

Rpo=O for w<wc (6) ---
Rpo=h/(cpr) for (o>wc 12 1

The result is shown in Fig.2. A self-excited Rotating speed o

oscillation occurs in the wide region over the Fig.2 Resonance curves for a system with
major critical speed. internal damping. (Ne.=Ns,=0)

I



3.2 A nonlinear system with no internal damping. (Da,=D&Y=O)
The solutions of subharmonic oscillation at wa= o(= 2pr) is written as follows.

Ox=Rcos(o t + &) +Pcos(w t +I39) (7
Oy=Rsin( t +8) +Psin(G t +/3 )_ (7)

where u*=+ (1/2)w. The stationary amplitude Ro for subharmonic oscillation is given by

Ro =0, and {G1 +490)(Ro 2 +2P 2 )}2 +(cc4.) 2 =4C M1 2  (8)

where G1 =G(aý). A result is shown in Fig.3.
3.3 A system with internal damping and nonlinear spring characteristics.
(A) Entrainment In the neighborhood of the resonance point wo, a self-excited oscillation
with frequency pr disappears and only a subharmonic oscillation appears. The form of this
entrained solution is the same as Eq.(7). Resonance curve for Ro is given by

{G,+4/3'(R 0
2 +2P 2 )} 2R 0

2 +(- cwr*Ro + h )2 =4 zE")2p 2 Ro2  (9)
A result is shown in Fig.4. The solution Ro •0 is separated from the trivial solution.
(B) Self-excited oscillation In the rotating speed regions which are beside the resonance
point •o, a self-excited oscillation with frequency Pr appears together with a harmonic
oscillation. Considering a derived frequency m.t

qr=(b-pr, we suppose the solution as follows. ,=meric,, I- latio.

6z=Rp cos(pr t +6p)+Rq cos(q t +6f)i C; Approximate solution-- Stable

+Pcos(LO t +f3) --- US table /
OY=Rp sin(prt +6p)+Rq sin(qrt +6,) (10) Utb , .=o.30 .5• - c =0 .03

+Psin(wt+ 3) = ....2.

Results for the amplitude Rpo and the i'C=°
frequency Pr are shown in Fig.5. Some of I==J3==
these curves represent substantially the
same curves as Fig. 4. o - -t:

3.0 3.5 4.0
4. Experiments Rotating speed WJ

Experiments were performed with an Fig.3 Resonance curves for a system with Non-•elastic shaft with a disc. The resonance linear Spring Characteristics (De,,=Dey=0)

Icurves at the resonance point of sub-
harmonic oscillation are shown in Fig.6. 1 .0solution St

- StableeSo
u -- Unstable l

2.0 /,I
. q,• ýo., A/. ,,=0.3

4, 
C = ~-'c0.03

•-=-- P"•' • •'T /'i c =~oT =0.2

P * ho.o=0.03 r 0.14V , / -J ' -1 W = 0

p +1/2)e 0

' Rotating speed W

3.0 3.5 4.0 Fig.4 Entrained solution in a self-excited
Rotating speed W system with Nonlinear Spring Characteristics

-- 1.5 -o x-direction of
Stable E - " --- y-direction "

CL -- Unstable

I 0 l 
0J 

p=+ •
'. - p; '(/2)) - a--,] .[+•

0
3.0 3.5 4.0

Rotating speed ble 0 -0

Fig.5 Resonance Curves for a self-excited system Rotating s Ceed (r+W)3

with Nonlinear Spring Characteristics Fig.6 Experimental results

[literatures] (I)Yamamoto,T.et al.,BulI.JStlE,Vol.18,No.123(1975),965. (2)Tondl,A. ,Some Problems of Rotor

Dynamics,(1965),Chap.l. (3)Yamamoto,T. and Ishida,Y.,Ing.-Arch.,46(1977),125.I' . . .. .. .



Subharmonic Forced Traveling Waves in a Thin Perfect
Circular Disk

Tariq A. Nayfeh and Alexander E Vakakis I
Department of Mechanical and Industrial Engineering

University of Illinois - Champaign

We study the subharmonic forced vibrations of a thin, isotropic circular disk. I
For finite amplitude motions, geometric nonlinearities due to midplane stretching result, and
a variety of dynamic phenomena is observed. Because the disk is symmetric, pairs of modes
corresponding to orthogonal nodal diameters exist. We use a Galerkin approximation to
obtain the equations which govern the dynamic response of the system; the resulting
equations are a system of coupled nonlinear ordinary differential equations with cubic
nonlinearities. Furthermore, the assumed perfect symmetry of the disk leads to one-to-one
internal resonances.

Subharmonic excitation is considered and the method of Multiple Scales is
used to obtain the equations that govern the amplitudes and phases of two interacting
"orthogonal" modes. The fixed points of these equations are then found numerically, and
their stability is analyzed. Subharmonic forced traveling waves are identified, along with
other standing-wave solutions. The traveling waves are created and destroyed through
saddle-node bifurcations. The results are then verified by numerical integration of the
equations of motion.

I
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PERIODIC MOTION THROUGH A BIFURCATION

I Huw G.Davies and Ruigui Pan

Department of Mechanical Engineering
University of New Brunswick

P.O. Box 4400
Fredericton, N.B. E3B 5A3 CANADA

A two mode model of ship motion describing nonlinear coupling between the
pitch and roll modes shows an interesting bifurcation. The response to
sinusoidal excitation has been analysed extensively by others (see, for example,
the text, Nonlinear Oscillations by Nayfeh and Mook), and is well understood.
As the wave excitation increases, the amplitude of the pitch mode increases
linearly, with zero amplitude roll mode, until the pitch mode saturates; all
further increases in input energy then feed into the roll mode via the nonlinear

I coupling. Depending on the degree of tuning between the excitation frequency
and the two modal frequencies, rapid jumps from one locally stable solution

I to another can occur as the excitation amplitude increases.

An approximation to a narrow-band wave spectrum is made by using three
Isinusoids with closely spaced frequencies. Multiple time scaling is used to find

the first order response. A restricted set of responses (perfect tuning, suitable
I initial conditions) is described by the equations:

S+ a + b = Bo+ Bcosct
I I--ab = 0.

I a is associated with the pitch mode, b with the roll mode. The stationary, or
unmodulated, solution with B1 = 0 has a simple flip bifurcation at B" = 0.

I An obvious and exact solution has b = 0. In the stationary case this is stable
only for B. < 0. In the nonstationary case, the response shows effectively
infinite penetration through the stationary bifurcation into the locally unstable
region (B. + B1 cos wt) > 0. The solution is shown to be globally stable for
PB < 0. Small perturbations either (i) decay immediately, (ii) grow
immediately before decaying, or (iii) decay initially to extremely small values

I (appearing to be locally stable) before growing dramatically before their

I



eventual decay. Analytic solutions are obtained that describe if and when the
large growth occurs, and the overshoot. The solution is described by following
the trajectories of psuedo-stable fixed points on the phase plane; solutions I
move towards and dwell close to saddle points before moving rapidly to a
stable focus or node. The solution provides a graphic and simple example of 3
how local stability theory is inadequate to describe the global response.

A second solution in the stationary case has a = 0, and is stable for Bo > 0. i

Corresponding nonstationary solutions are obtained approximately by (i)
matched asymptotic expansions, and (ii) an ad-hoc approach at very low
frequencies using the fact that the sum (a+b) = B0 + B1 cos cat. The
approximate solution again estimates when the jump away from b very close
to zero occurs. The minimum value of b can be extremely small; even so, this i
small value is critical in determining how long the solution dwells near a saddle
point before moving rapidly towards a stable focus. A crude approximation is
given also for the degree of overshoot. Numerical simulation is used to
confirm the analytic solutions.

In the more general case, when the tuning is not perfect, the first order
response is described by four first order equations rather than the two
discussed above. The stationary solution appears to be well behaved. The
nonstationary solution now involves more complicated jumps in amplitude.
Numerical examples are given that show that associated with these jumps are
additional bifurcations, including a sequence of period doubling bifurcations
leading to chaos.

Work supported by the Natural Sciences and Engineering Research Council
of Canada.
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Formulation of a Vibration Control Law Based on Internal Resonance

KEVIN L. TUER, Graduate Student, Dept. of Electrical & Computer Engineering

M. FARID GOLNARAGHI, Assistant Professor, Dept. of Mechanical Engineering

DAVID WANG, Assistant Professor, Dept. of Electrical & Computer Engineering

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

1 In recent years, there has been a considerable amount of research effort allotted to the

3 development of techniques to control the vibrations in flexible systems. This is due, in part,

but not limited to thý,. need for lightweight robotic and structural technology for space

3 applications. Two such examples are the Canadarm and the space station "Freedom".

There have been a variety of both passive and active vibration control strategies3 introduced over the past several years ii) -, active/passive joint configurations that utilize

Coulomb friction to dissipate the energy 2; ,ri r• 'ibrating system, the use of piezoelectric

materials as both actuators and sensors, the proof-mass actuator and proof mass damper,

vibration suppression via tendon control and, most recently, vibration control via internal

resonance.

Internal resonance is a dynamic phenomenon inherent to nonlinear systems. The

particular state of internal resonance is dependent on the nature of the nonlinearities. That is,

a system with quadratic nonlinearities can exhibit 2:1 internal resonance, a system with cubic

nonlinearities can exhibit 3:1 internal resonance, etc. Mathematically, internal resonance is

defined, primarily, via the commensurability of the natural frequencies of the system. That is,

a nonlinear n-degree-of-freedom system can exhibit internal resonance if there exist constants,

(C1,C2,...,C), such that (C1 Q1 +C2 2 +...+C,O-0) where (K,,D-,.) are the natural

I frequencies of the linear portion of the nonlinear system. Once a state of internal resonance is

established, a transfer of energy between the modes of vibration transpires giving rise to a

phase and amplitude modulated response.

In this paper, we propose a vibration control law to regulate the first mode oscillations

of a flexible arm robot. The operation of the controller is contingent on modal coupling3 effects resulting from an internal resonance condition. To illustrate the feasibility of such a

I
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control law, we consider a very simple model. The plant is modelled by a second order

differential equation which is representative of the first mode of oscillation of a single flexible

robot arm, itself modelled as a cantilever beam. Attached to the base of the arm is a motor

which is used to control the vibrations of the system. In order to establish an internal 3
resonance condition, an additional second order, single-degree-of-freedom equation, termed

the "dummy" equation, is introduced via software. The linear natural frequency of the dummy

equation is defined such that the dummy equation and the plant equation form an internally

resonant pair. We choose to exploit the effects of 2:1 internal resonance thus we incorporate

essential quadratic nonlinear terms in both the dummy and plant equations to establish an

artificial state of internal resonance via software. The nonlinear term associated with the plant U
equation becomes the equivalent torque required to establish the amplitude modulated motion

that we desire - the result of a transfer of energy between modes of vibration. Therefore, the 3
task at hand is to generate a torque profile that emulates the dissipation of energy once it has

been transferred from the plant to the dummy system. U
The controller design has been established on a heuristic basis. Through the selection

of the magnitude of the coefficients of the nonlinear terms and the initial conditions imposed I
on the dummy equation, we can set the response rate and the steady state characteristics of

the controlled system. The most novel result of the analysis is that the control torque isU

unidirectional. Under this control law, the torque profile always takes this form since the

generated torque is proportional to the velocity of the second equation squared. This torque
characteristic makes this particular control law ideal for systems using either thrusters or

tendons as control actuators such as vibration control applications for Large Space Structures
(LSS).3

A similar structural configuration regulated under a PD (Proportional-Derivative)

control law is compared to the proposed control scheme via simulation. If each controller is 3
designed such that the controlled systems have similar rise times and settling times, the

control torques are found to be approximately the same magnitude. The overwhelming •

advantage of the internal resonance controller is its unidirectional torque requirements as

compared to the bidirectional torque requirements of the equivalent PD controller. 3
I
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I CHAOTIC BEHAVIOR OF A PARAMETRIC
NONLINEAR MECHANICAL SYSTEM

I
Claude - Henri LAMARQUE and Jean - Marc MALASOMA

ECOLE NATIONALE DES TRAVAUX PUBLICS DE L'ETAT

1 Rue Maurice AUDIN 69518 Cedex, FRANCE.

I
ABSTRACT

The chaotic dynamics of a single degree of freedom nonlinear mechanical system under

periodic parametric excitation is investigated numerically. The response to a principal

parametric resonance of the same equation was previously considered by different autors

[1,2]. In the present study, the amplitude and the frequency of the parametric forcing are

taken as control parameters and are varied in the range [0.5-1.5] and [0.5-5.0]
respectively.

Under these conditions the system exhibits a complex dynamics with a rich structure of
coexisting attractors of distinct topological nature. Primary stable subharmonics up to
period 12 have been seen numerically. All of these periodic stable solutions are born in
Hopf bifurcations of the trivial solution of the equation or in saddle-node

bifurcations [3,4].

A multitude of transitions to chaos were observed in various parameter ranges,

frequently via the Feigenbaum route, but also type I and type III intermittency transitions
to chaos were found. We also give numerical evidence that the system can follow an
alternative route to chaos via intermittency from an equilibrium state to a chaotic one,
which was not studied in the previous simulations of the dynamics of the system.

I
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Besides the well known descriptions to identify the evolution of chaos (power spectral I
densities, Poincar6 map, diagram of bifurcation ...), we have analysed the chaotic time

series by using a transformation which gives a representation of the displacement or the 5
velocity as a function of both time and frequency : the continuous wavelet transform [5].

The wavelet transform consists of expanding a time history s(t) over wavelets which are 3
constructed from a single function by means of dilations 1/a and translations b. This

tranformation can be seen as a mathematical microscope whose position is b and

magnification is 1/a and whose optics are given by the choice of the specific wavelet. We

have used a real wavelet called mexican hat, and a complex-valued one named the Monet

wavelet. I

One of the aims of continuous wavelet transform is to provide an easily interpretable 3
visual representation of signals, and a simple inspection of the wavelet transform allows

us to differentiate two different chaotic time series. Since its implementation on a 3
computer is not excessively time consuming and does not require large storage the

wavelet transform provides a very efficient tool for analyzing chaotic dynamics. 3
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CHAOS IN THE UNBALANCE RESPONSE OF JOURNAL BEARINGS

SRD BROWN * P S ADDISON ** A H C CHAN **

* Mech. Eng. Dept HERIOT-WATT UNIVERSITY EDINBURGH
• * Civil Eng. Dept GLASGOW UNIVERSITY

Recently there has been an explosion of interest in non-
linear systems in many areas of science and technology. It is now
widely accepted that low dimensional systems which are
deterministic can behave chaotically, essentially unpredictable.
The classic example is based on the work of Lorenz in the early
60's which dealt with a simplified set of equations derived from
weather prediction models. Duffing's equation has been shown to
behave chaotically ( UEDA 1973 ) and there are many otherI examples from a wide range of applications. The essential
requirements for chaotic behaviour are non-linearity and at least
three coupled ist order systems.

An important mechanical component which has a strong non-
linearity is the fluid film bearing. This is particularly true
of journal bearings which are widely used in turbo-machinery. A
popular analytical model can be derived from Reynolds lubrication
equation by neglecting the circumferential pressure gradient
contribution to flow. The resulting PDE is often used to provide
a compact set of equations to calculate load, friction losses and
flow. The equation can be linearised to yield stiffness and
damping coefficients for rotor response and stability
investigations. When these coefficients are used to calculate
dynamic response to mass unbalance elliptical orbital motion is
obtained. However non-linear solutions yield distorted orbital
patterns especially when the journal displacement approaches the
bearing clearance. Holmes investigated large amplitude response
and published a number of limit cycles. Ettles ( 1978 ) et al
demonstrated, using numerical integration methods, that aperiodic
behaviour was possible for low levels of unbalance.

Chaotic behaviour is _.aret likely when the magnitude of the
unbalance force exceeds the gravitational force. In this case the
unbalance force is intermittently counteracted by gravity. This
effect is magnified by the small load instability of plain
journal bearings. If the unbalance magnitude is increased then
the rotating force dominates and hence the behaviour is
moderated. The transition from regular limit cycle response to
the chaotic regime , as the unbalance level is increased, is
revealed using frequency spectra and' Poincare sections of phase-
plane data. Further consideration of dynamic/static force ratio
show the present large unbalance chaotic case can be shown to lie
on the low unbalance aperiodic boundary given by Ettles.

More sophisticated methods of demonstrating chaos in a
particular system are based on establishing the fractal dimension
of the strange attractor revealed by Poincare sectioning. One
such method , the Grassberger-Procaccia algorithm, is based on
the construction of a pseudo-attractor of N dimensions using aImethod of time delays and data from a single co-ordinate. The
correlation measurement obtained is known to give a lower bound
on the fractal dimension. For the bearing model considered the
attractor dimension is established at 2.15 for embedding
dimensions of up to 12. This indicates that the dynamics of the
journal bearing exist on a finite, low-dimensional attractor, a
typical result for chaotic bonaviour in dissipative systems with3 only a few deqrees of freedom.
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NONLINEAR RESPONSE OF A CLASS

OF ENGINE MOUNTS 3
by

A.G. HADDOW, T. ONSAY and M?. BRACH 3
DEPARTMENT OF MECHANICAL ENGINEERING

MICHIGAN STATE UNIVERSITY
EAST LANSING MICHIGAN 48824-1226

I
The automobile engine provides a formidable vibration isolation problem. Due to its
nature, it is the cause of forces and acoustic noise which are transmitted to the rest of the
automobile. These disturbances range in frequency from 6 - 15 Hz (engine rigid body I
modes) to 20 - 40 Hz (typical idle speeds) to higher frequencies due to engine combustion.
The engine also must be protected from gross displacements which may occur due to road
excitation, turning, stopping, etc. These conflicting vibration isolation requirements, low
stiffness for idle vibration isolation and high stiffness and damping for motion control, has 1
led to the development of the hydraulic engine mount as a replacement for the more
standard elastomeric type.

This talk shall present a brief description of the physical operation of this class of mount,
drawing attention to the source of many gross nonlinearities. For example, the flow of
fluid through specially design tracks within the mount. The resulting behavior is further
complicated by the addition of a mechanical decoupler which creates an amplitude I
dependent alternative path for the fluid to flow through [1,2,3).

The results of an ongoing study into the complex nonlinear behavior of such mounts shall
be presented. Results from experiments conducted on mounts currently being used in the
upper-end of the car market will highlight the shortcomings of the linear modeling and
testing techniques that are currently used by industry. The response of the mount to a
simple sinusoidal displacement will be discussed and attention focused on more realistic I
mathematical models which can be used to predict the mounts behavior. The existence of
chaotic responses shall be demonstrated along with a variety of a number of other unusual
phenomena. As is widely appreciated, engine vibrations contain a number of harmonics.
With this in mind, the response of the mount to multi-harmonic input will also bediscussed.

Finally, having presented an overview of the nonlinear types of response that are observed, 3
attention will be focused on ways in which the presence of the nonlinearities can be used to
enhance the overall performance of the mount.

REFERENCES:

1. "Hydraulic Engine Mount Characteristics," P.E. Corcoran and G. Ticks, SAE
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2. "Understanding Hydraulic Mounts for Improved Vehicle Noise, Vibration and Ride
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3. "Linear Analysis of an Automotive Hydro-Mechanical Mount with Emphasis on 3
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DYNAMICS OF A FOUR WHEEL STEER VEHICLE

Nestor E. Sanchez
Division of Engineering

The University of Texas at San Antonio

Abstract

The present work develops a nonlinear analysis of the response of an all wheel

steer vehicle. Maneuvers in response to steer angle inputs can be accurately

described by neglecting the effect of the suspension and using a simple two-

degree-of-freedom model including lateral displacements and yaw. The lateral

and directional dynamics in this model are domninated by the tire side force

properties which exhibit clear nonlinear characteristics. The governing

equations are derived, and the analytic and numerical solutions obtained show

tnat the traditional sinplifications used in control analysis lead to

considerable errors and underestimation of potentially dangerous responses.
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A TRANSMISSION MERIT PARAMETER FOR PLANAR MECHANISMS U
Fubang Wu, Graduate Assistant i
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ABSTRACT 3

In mechanism design, the pressure angle or transmission angle is conventionally used U
as an indicator of the quality of motion and force transmission for a number of planar
mechanisms including linkages and cam mechanisms. Perhaps the earliest in-depth study I
of the transmission quality is the work done by Hartenberg and Denavid [1]. They
differentiated the displacement equations for a four-bar function generator, and derived an 3
expression for the transmission angle and the output sensitivity to link length perturbations.
They also showed that a mechanism with a poor transmission angle is subject to large
mechanical errors. A crucial development in this area is the concept of transmission index
introduced by Sutherland and Roth (2], which extended the concept of transmission angle
to any spatial linkages. This index is shown to be related to the possible mechanical error
in a mechanism. By using these ideas, much work has been done for simple planar, spatial
and spherical function and path generators, which aimed to maximize the transmission 3
quality of the mechanisms. However, the generalization of these methods to more complex
mechanisms has not been addressed. The key question seem to be what quantity plays the
same role for multi-loop and combined mechanisms as the transmission index for the simple
mechanisms.

I
I



I1 A Transmission Merit Parameter (TMP) is defined in this paper which
comprehensively reflects the transmission quality and the output sensitivity of a mechanism

I to dimensional disturbance. The TMP is derived from direct differentiating of the system
loop closure equations, and it provide a mapping from the system input(s) to the system

I output(s). In contrast to the transmission index, TMP is a function of both character
angle(s) and the link lengths.

3 It is shown that the Transmission Merit Parameter is an extension of the conventional
transmission angle to multi-loop and combined mechanisms, since the character angle in this

I parameter is simply the conventional transmission angle when the mechanism is a simple
one such as a four-bar linkage. It is also shown that the idea of TMP is suitable for

I mechanisms with multi-degrees of freedom, and that without a measure such as TMP,
representation of the transmission quality for combined and multi-loop mechanisms would
be a difficult task. It is suggested in this paper that the TMP also be used for dimensional
synthesis or optimizing mechanisms performing certain tasks.
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I Applications in Nonlinear Soil/Structure Interaction

Samir J. Serhan
Senior Structural Engineer

Gilbert/Commonwealth, Inc.
P.O. Box 1498

Reading, PA 19603

I
Two eastern U.S. nuclear power plants, V.C. Summer in South Carolina and Perry in
Ohio, went through extensive licensing effort to obtain fuel load licenses when recorded
earthquakes on sites exceeded the original design basis. On December 1989, Krsko
nuclear power plant, in the Republic of Slovenia, Yugoslavia, experienced a short-

duration high-frequency high-amplitude earthquake that triggered plant seismic
instrumentation. Acceleration records were obtained inside the buildings and a nearby
free-field recording station. Accelerometers were installed on the base mats of the
Reactor and Diesel Generator Buildings and one free-field accelerometer was installed in
a small shelter located 50 m south of the Reactor Building. Each of these accelerometers
provides translational motions in the East-West, North-South and Vertical plant
directions. Figure 1 schematically shows the plan of Krsko nuclear power plant, locations
of earthquake instrumentation and recorded peak ground accelerations.

This paper presents the common characteristics of the Krsko earthquake and Eastern
U.S. Type earthquakes, assesses damage potential, assures structural integrity of these
safety-related power plants and describes results of an analytical investigation of how the
records of the Krsko earthquake may be influenced by soil/structure interaction. This
investigation is based on soil data, that was obtained from the pre-construction
geotechnical investigations at the site including few parametric studies to account for
uncertainties in the soil properties. These consist of variations in the shear and
compressional wave velocities and variations in the seismic wave environment in the
form of arbitrarily oriented body waves or Rayleigh surface waves.

I The analysis takes irto account nonlinearity of the soil material, radiation and hysteretic
damping, viscoelastic halfspace, ground-water table level, structural embedment,
soil/structure interaction, and structure/structure interaction. The analysis is based on
state-of-the-art computer software, elaborate analysis techniques and simpler
engineering approximations.

Results of analysis show clear evidence of strong soil/structure interaction, nonlinear
softening of the soil material and encouraging qualitative and quantitative agreement with
the recorded measurements. The structural response motions display high rocking3 mode participation due to the high-frquency content of the free-field input motion.

LI
I,



I
N, E. KRSK[]

DECEMBER 1989 EARTHQUAKE
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A8 INTAKE STRUCT. EL. 100 0.10 0.06 0,06
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Chaotic Motion and Stochastic Exctitaion.

F.Bontempi°, F.Casciati°°
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The behavior of nonlinear systems that are chaotic and/or

stochastic is investigated. Their initial state can only be

specified with finite precision. This uncertainty leads to

the incapacity of predicting the long-time motion of the

system.

Attention is focused on the chaotic behavior of a nonlinear

dynamical SDOF system under harmonic and stochastic

excitation. The behavior of this oscillator was characterized

in past studies by techniques associated with power spectra,

Poincare' sections, Lyapunov exponents, capacity and

information dimensions and probability densities.

The Kolmogorov's entropy K determines the average time over

which the state of a system, displaying deterministic chaos,

can be predicted. After this time, one can only make



i
statistical predictions and the numerical calculation of

single trajectories loses its meaning to describe the system

behavior. In higher dimensional systems, K measures the 3
average deformation of a cell in phase space and becomes

equal to the integral over phase space of the sum of positive 3
Lyapunov exponents.

Since a direct computation of K is presently unpracticable, i

one looks at the evolution of a set of many identical

oscillators with close initial conditions . One computes the3

evolution in time of the entropy of the set of systems and

derives informations on K from the behavior of this function. 3
The result is an algorithmic process able to identify the

nature ( chaotic rather than stochastic) of the systemI

behavior.

I
U
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Horizontal-Vertical Response Spectra for El Centro Earthquake

I Ismail 1. Orabi
Mechanical Engineering Department

I University of New Haven
West Haven, Ct 06516

I
Goodarz Ahmadi

Mechanical Engineering Department
Clarkson University
Potsdam, NY 13676

1
Abstract

A single-degree-of-freedom structure subjected to horizontal and vertical' earthquake ground acceleration is considered. The corrected accelerograms
of El Centro 1940 earthquake are used. For a range of values of parameters,
maximum horizontal responses are evaluated. Particular attention is given to

I the amplification effects of the vertical ground acceleration. Combined
horizontal-vertical response spectra curves are developed. The results are
compared with some peak response estimates and reasonable agreement is
observed. A procedure for developing site-dependent smooth spectra is also
outlined.I

I
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Stochastic Response of a Parametrically Excited Buckled

Beam Under Wide-Band Random Excitation

A. M. Abou-Rayan and A. H. Nayfeh I
I

Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University I
Blacksburg, VA 24061 USA 3

The stochastic response of a simply-supported buckled beam to a 3
wide-band random excitation is investigated using analog-computer

simulations. The random signals of the excitation and response are processed I
to determine their mean squares, autocorrelation and cross-correlation

functions, phase portraits, power and cross-spectral densities, cumulative

distribution functions, and probability density functions. The analog-computer 3
results are qualitatively compared with those predicted by solving the moment

equations obtained from the the Fokker-Planck-Komologorov (FPK) equation

using both a Gaussian and a non-Gaussian closure scheme. The simulation 3
result.3 show that the system response is a narrow-band process. The

measured probability density functions of the response suggest that the I
Gaussian closure scheme is sufficient for relatively low levels of excitation. 3

I
I
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LYAPUNOV EXPONENTS AND INFORMATION DIMENSIONS OF NONLINEAR SYSTEMS

UNDER DETERMINISTIC AND STOCHASTIC EXCITATIONS

SC.W.S. To* and M.L. Liu

Department of Mechanical Engineering
The University of Western Ontario
London, Ontario, Canada N6A 5B9

Abstract

The important concept of Lyapunov exponent has emerged in many fields in the last decade. For examples,
it can be found in the fields of random matrices and random maps, nonlinear stochastic systems, stochastic flows
on manifolds, chaos and phase transitions. It plays a crucial role in the determination of chaotic motions in nonlinear
systems. Strategies for its numerical computation of general single and multi-degree-of-freedom (MDOF) nonlinear
systems under deterministic excitations are available in the literature. However, for nonlinear systems under stochastic
excitations techniques available for the determination of Lyapunov exponents are very limited. They are essentially
confined to single degree-of-freedom (S DOF) systems with small nonlinearities and small force. For two DOF
systems with small nonlinearities and small forces it is restricted to non-resonant cases.

While nonlinear systems with small and large deterministic forces, and nonlinear systems with small
stochastic excitations have many engineering applications, there are nonlincar dynamic engineering systems excited
by very large deterministic and stochastic forces over a relatively long duration of time. For examples, the thrust
from the propulsion system of a rocket or a jet engine of an aircraft and the force exerted on the wings of an
aeroplane by atmospheric turbulence. To be able to design the above systems more reliably and economically it is
imperative that the question of stability and the nature of motion, be it ordered or chaotic, be addressed qualitatively
and quantitatively. Furthermore, it is also of interest to know the consequence of a nonlinear system disturbed by
a large stationary force. Thus, there is a need to develop analytical techniques and numerical strategies for the
determination of Lyapunov exponents of nonlinear systems under large stationary forces.

This investigation is concerned with the development of a numerical strategy for the computation of
Lyapunov exponents of SDOF and MDOF nonlinear systems under small or large stochastic excitations. For
comparison purpose, Lyapunov exponents of nonlinear systems under large deterministic forces are obtained by using
the strategy and computer program of Wolf, Swift, Swinney and Vasano (1985). In addition, the concept of
information dimension for these systems is applied. For illustration of the use of the proposed strategy the results
of a Duffing oscillator are obtained. While in the case of deterministic excitations thý Lyapunov exponents and
information dimensions, over an entire range of magnitudes of the force studied, are very irregular and they show
ranges of ordered motions among chaotic ones, in the case of stochastic excitations the ensemble averages of
Lyapunov exponents and information dimensions based on the ensemble averages of Lyapunov exponents, over an
entire range of spectral densities, are smooth and chaotic. In the latter case there is an optimal information dimension
over the entire range of stochastic force magnitudes.

* On leave at the Earthquake Engineering Research Center, University of California, Berkeley, 1301 South 46th Street, Richmond,California 94804 , US.A.
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The Nonstationary Period Doubling Route to Chaos

R. M. Evan-Iwanowski Chu-Ho Lu
Dept. of Mechanical & Aerospace Engineering Department of Mechanical Engineering
University of Central Florida Memphis State University

Orlando, Florida 32816 Memphis, TN 38152

I Abstract

In this study, a computational analysis has been initiated with a view of determining the effects
of nonstationary processes of two time dependent control parameters on period doubling bifurcation
cascade-a typical route to chaos. The driven, damped, with negative (softening) nonlinear
coefficient Duffing oscillator with forcing amplitude and frequency varying linearly with time
(constant sweep) has been employed. The Duffing oscillator is widely used to mathematically
model a variety of engineering and physical systems. The stationary 2T, 4T... X bifurcation regions
and their boundaries have been determined. Nonstationary regimes used consisted of(l) transverse
transitions through the bifurcation regions with f(t) -fo "" ac t, 9 - const. and (2) transitions along
the lower boundary of the 2T region or L-line for f(t) - fo ± at; Q(t) - C± at.

New revealing, at times puzzling and always complex behavior of nonstationary period doubling
bifurcations has been uncovered. The study also establishes an agenda for nonlinear dynamics and
chaos in nonstationary regimes.
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Prediction of escape from a potential well 3
under harmonic excitation

Lawrence N. Virgin I
School of Engineering, Duke University, Durham, NC 27706, USA.

and N
Raymond H. Plaut and Ching-Chuan Cheng I

Department of Civil Engineering, Virginia Polytechnic Institute and
State University, Blacksburg, VA 24061, USA. 3

Abstract I

The nonlinear systems considered here are initially at rest in a
stable (reference) equilibrium state and then are subjected to
harmonic excitation. For sufficiently small forcing amplitudes, the
motions remain in the neighborhood of the reference state. At aI
critical value of the excitation, these systems exhibit an abrupt jump
in their response. Our objective is the determination of this critical
force by an approximate technique. There are basically two types of
mechanisms involved here. First, the jump may correspond to the
loss of stability of a steady-state cycle (e.g., the classic jump 3
phenomenon in nonlinear resonance) or it may be triggered by a
sequence of period doubling bifurcations. Seconid, the jump may be a
direct result of transient behavior.

For structures such as arches or shells, this jump in response
may correspond to "snap-through" instability, in which the curvature 3
changes sign and part or all of the structure may invert [1]. For other
structures, it may be associated with "overturning" under wind or
earthquake loading. For ships, the jump may be associated with
capsize [2]. If the system is conservative when damping and forcing
effects are not included, the potential energy has a minimum at the 3
reference state, which lies in a "well". A "potential barrier" must be I

I
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overcome for the jump in response to occur, and hence this behavior
is often called "escape from a potential well" [3].

The app. ximate method used here has three features. The
first is the determination of an approximate steady-state motion.
This will be accomplished with the harmonic-balance technique, and
the solution will be assumed to have the same frequency as the
excitation. The second feature is the determination of the unstable
equilibrium states of the undamped, unloaded system. If only one
such state exists, or several states but all with the same potential
energy, the potential energy at these states (relative to the reference
state) is denoted Vs. Otherwise, Vs will be the potential energy of the
"nearest" state, which is reached first as level surfaces of constant
potential energy are expanded about the reference state. Thirdly, the
maximum total energy, Emax, during the approximate steady-state
motion is determined. The approximate critical forcing amplitude for
escape is taken to be the lowest value for which Ema. > V, (i.e., the
system has enough energy to overcome the potential barrier). In
some cases, a safety factor p is included and the condition Em> pV>
is used, with p = 1 when there is no safety factor. The method is
applied to a number of examples, and comparison is made with the
critical loads obtained by direct numerical integration of the
equations of motion [1].
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1 Assessing and quantifying the engineering integrity of

nonlinear vibrating systems in terms of basins of attraction 3

I

Mohamed S. Soliman I
• I

Centre for Nonlinear Dynamics and its Applications, Civil Engineering Building, University
College London, London WC1E 6BT, England, UK U

Abstract

Complex phenomena including chaotic oscillations, dangerous bifurcations, co-existing solutions 3
and fractal basins are typical of nonlinear dynamical systems. However when simplicity can be
derived out of such complexity, a nonlinear analysis can have important engineering relevance.
Unlike linear systems where all initial conditions lead to one type of motion; be it to an equilibrium
point or to a harmonic oscillation, nonlinear systems can exhibit a rich and complex variety of
competing steady state solutions (attractors). All initial conditions that generate trajectories that 3
tend towards an attractor define its phase-space basin or domain of attraction. Indeed, there has
been much interest in basins of attraction, and how they undergo changes and metamorphoses.
Under the variation of a control parameter, such as the forcing frequency for example, as the
attractors move and bifurcate, the basins also undergo corresponding changes and metamorphoses.
For typical nonlinear systems, which include systems subjected to external, parametric or other 3

types of excitation, complex phenomena including subharmonic and chaotic oscillations, dangerous
bifurcations, co-existing small and large amplitude oscillations and fractal basins can be observed.

In assessing the engineering significance of such complex chaotic phenomena, more attention 3
should be paid to basins of attraction and their basin boundaries rather than the intricate patterns of
the bifurcating steady states. This is particularly important for engineering systems operating under
transient conditions in noisy or ill-defined environments, as regular excitation will manifestly never
persist long enough for transients to have decayed as to allow for a steady state analysis.
Furthermore, since the initial conditions at the beginning of the excitation may vary widely and 3
indeed are unknown, we must look at all possible transient motions, rather than focus on just the
one steady-state motion.

As recent studies have shown such by adopting such an approach there can exist a rapid and I
dramatic erosion of the basin long before the final steady state solution loses its stability. This I

____ I



conclusion is reinforced by the fact that basin boundaries can become fractal, adding a new degr :e
of uncertainty in the respo t '.
In this paper we present, f-Jr typical types of nonlinear systems, basin erosion studies, that exhbit

this type of behaviour. For systems operating in essentially transient conditions, we quantify the
global integrity or stability of the system in terms of the safe basin of attraction. We also assess this
behaviour for systems operating under essentially steady-state conditions. The local stability, (but
not in the infinitesimal sense), of the steady state, say to an impact loading, can be quantified in.
terms of the local basin structure.
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Influence and Equivalence of Different Ship 3
Roll-Damping Models

through a Melnikov Analysis

M. Bikdash*, B. Balachandranw, and A. Nayfeh*** i
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061 i

In this study, we examine the influence of roll damping on the rolling motions i
of an unbiased ship in regular beam seas in this study. In particular, we are
interested in motions that could potentially cause dynamic capsizing. Assuming
that the roll motion is uncoupled from the other motions and that the ship does I
not possess any forward speed, we model the ship as a single-degree-of-freedom
system. A general damping model is considered and a Melnikov analysis is
conducted to assess the influence of the different damping terms. Using i
phase-plane concepts, we obtain simple expressions for what we call the Melnikov
damping coefficients.

As an application, we consider the equivalence of linear-plus-quadratic and
linear-plus-cubic damping models, systematically investigated by Dalzell [1].
Dalzell compiled experimental records from several sallying experiments and
showed that with properly chosen damping coefficients both damping models I
yield identical roll-extinction curves. Hence, Dalzell concluded that, a
linear-plus-cubic damping (LPCD) model could be used to model ship-roll
damping. For mathematical reasons, the LPCD model is preferable over theU
LPQD model because the cubic damping term is infinitely differentiable while the
quadratic damping term is only once differentiable. First, we follow Dalzell in
choosing the damping coefficients such that the roll-extinction curves are identical
for both damping models. This choice requires that the two damping models be
close in a least-squares sense over some domain of matching that is fixed a priori
and assures that the two damping models will yield identical free-oscillationm
behavior. However it is not known if the two chosen damping models will yield
identical forced-oscillation behavior. Balachandran; Bikdash, and Nayfeh [2]
examined the frequency-response curves, the Melnikov predictions for the 3
maximum safe wave slope, and the basins of safe and capsize regions and
concluded that the two damping models yield different transient and steady-state
forced-oscillation behavior.

It is of interest to examine under what conditions the LPCD and LPQD
models can yield identical forced-oscillation behavior besides identical
free-oscillation behavior. Here, we explore if it is possible to choose the domain
of the least-squares approximation such that the two models yield the same

* Research Associate, Bradley Department of Electrical Engineering. i
** Research Associate, Department of Engineering Science and Mechanics.

University Distinguished Professor, Department of Engineering Science and
Mechanics.
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McInikov predictions. From a Melnikov analysis, we infer that the influence of
the different (lamping terms on the Mclnikov function is simple and additive.
Further, we derive a condition under which the two models can be made to yield
the same Melnikov predictions and show that the resulting models have the same
frequency-response curves and very similar basins of safe and capsize regions.
Thus, with this judicious choice of the matcl ing domain, the two models yield the
same free-decay response, and the same steL dy-state, and similar transient forced
responses. A detailed presentation of the results will be made in the full paper.
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NONLINEAR AND CHAOTIC OSCILLATIONS I
OF A CONSTRAINED CANTILEVERED PIPE CONVEYING FLUID:

A FULL NONLINEAR ANALYSIS

M.P. PAIDOUSSIS and C. SEMLER 3
Department of Mechanical Engineering, McGill University 3

817 Sherbrooke St. West, Montreal, Quebec, H3A 2K6, Canada.

In this paper, the planar dynamics of a constrained cantilevered pipe conveying fluid I
is examined numerically by considering the full nonlinear equations of motion. The linear

and nonlinear dynamics of pipes conveying fluid has been studied quite extensively, both I
theoretically and experimentally, over the past thirty years. In a recent survey of the

subject [1], over two hundred papers onl various aspects of the problem were reviewed. It

was shown that the pipe conveying fluid has become a premier paradigm in dynamics.

The present study completes the circle of several studies by examining the effect of

other than restraint-related nonlinearities in the equations of motion on the dynamics 3
of the system. Indeed, Paidoussis & Moon [2] studied the dynamics of a cantilevered

pipe constrained by motion limiting restraints, and showed, both theoretically and 3
experimentally, tha.t chaotic oscillations occur at sufficiently high flow velocities. In

their study, three principal idealizations were introduced: (i) the linearized equations 3
of motion were utilized, apart from the nonlinear impact force term; (ii) a two-

mode Galerkin discretization of the equations of motion was used for analysis; (iii) I
the trilinear spring was idealized by a cubic one. They -were able to prove that the

chaotic-looking oscillations, after a period-doubling cascade, were indeed chaotic. Despite I
these idealizations, the correspondence between theoretical and experimental results was

remarkably close qualitatively; but, quantitatively, there remained a fair margin for possible

improvement. This was partially done by Paidoussis, Li & Rand [3].

Here, the full nonlinear equations of motion [4) and a refined trilinear spring model

for the impact constraints are utilized, the niimber of degrees of freedom N is increased 3
and the results are compared to those in the foregoing studies. With the aid of modern

numerical techniques, involving the construction of phase portraits, bifurcation diagrams 3
I
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Sand power spectra and the determination of Lyapunov exponents, some rather interesting

and unexpected results have been obtained.

The inherent nonlinearities reduce the amplitude of motion of the pipe, rendering the

I system much more stable, from a physical as well as from a numerical point of view.

Even for a two-mode model (N = 2), very good qualitative and quantitative agreement

is obtained between theory and experiments. For example, after the region of chaos,

it is found that the system becomes unstable by divergence, which has been observed

experimentally. For N = 3, some unusual results are obtained for some parameters; beyond

the pithfork bifurcation, rather than getting the cascade of period-doubling bifurcation,

the amplitudes of the oscillations decrease: period-bubling is found to exist. For higher

values of N, the results are again very close to what is expected. For N = 4, it is shown

I that as compared to the nonlinearity due to the motion constraint, the effects of other

nonlinearities on the system dynamics are rather small.
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On The Nonlinear Parametric Excitation Problems Of
A One And A Half Degrees Of Freedom System

Jian-Xue Xu
Institute of Engineering Mechanics
Xi'an Jiaotong University, P.R.C.

Abstract3 In this paper, the nonlinear parametric excitetion problems of a one and a
half degrees of freedom system describeng the dynamics problems of a
electromagnetic mechanical coupled system in the energy industry are studied.

All connected phase isolated busbar which consists of conductor, insulator,
elastic supporting, and aluminium outer shell is used for transmission of large
electric current from large generator. As the shield mechanism of aluminium
outer shell, the conductor is subjected to motion electrodynamical force which
depends on the displacements and the velocities of points in the busbar. Thus
the calculation of the short circuit load and the analysis of dynamical response
of the conductor-insulator system will not be proceeded independently and so3 they form a electromagnetic mechanical coupled problem. Since the mathematic
model is complicate and it is necessary to find out the new dynamical behaviors
of this coupled system for engineering, this study is then raised.

In the case of elastic supporting, the coupled system can be described by
the third order nonlinear ordinate differential equation with variable
coefficients. (The "third order" corresponds the displacement and velocity of
conductor and magnetic field.)

d3 U d 2 u du 2du 3+3 -+t2 +bI -+b + 3cu -+b2cu = fcu

b2 = a - .osincot, b =it - 2lcoscot + A cos2.t, bo = 5 - 2ecosincot,
2 ~20

i f= F(I - cosont)(e -e")
where u is the displacement of the conductor, o) is the frequency of current

This is a dynamics problem of a nonlinear oscillation system under com-
bined parametric and forcing excitation. Here, we study the following dynamics3 topics of this special system.

Instability of linearized unforcing system of the original system

According to Floquet theory, the boundaries of the instability regions of
the linearized unforcing parametric excitation system of system (I) (c = 0, F = 0)

I
I
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are determined by the periodic solutious of this system. For finding the periodic
solutions there are some differences between this systm and the typical second
order Mathieu equation that first the equation of the linearized unforcing sys-
tem includes not one but three time variable coefficients and the number of the

parameters is more than two. Second corresponding the half degree of freedom,

there is no appearing of periodic solution. For using asymtotic method, we set

the parameters as follows 3
2 (2)a~ea• #=¢o+fl, rj6U, 13=4?,, c3:=3 +e3*(2

where e is small. Using strained parameter method, we obtained several re- 3
suits; one of them is that the boundary of the instability region corresponding a
first periodic solution of the linearized unforcing system is a three dimensional

surface in the four dimensional parametric space (tI, 1l, 6, 1): I
22 1 2 ' (3)-11(L) +Tfh4ow - =0(3I

I
Response and Instability of nonlinear unforcing system

In the original electromagnetic mechanical coupled system (1), there are

two nonlinear terms 3cu 2du / dt and b 2cu 3 , one of them, b2cu 3 , possesses
time variable coefficient b2c. This is also a new case of parametric excitation

problem. Here we study the unforcing system of (1) (F = 0). Using the asymtotic

method of Krylov, Bogoliubov and Mitropolsky, the approximative equations

of the series solution, and the corresponding amplitude and phase angle
differential equation are derived. Among them, the first approximaive equa-
tions of amplitude and phase angle are

da a dO 3( 32 3 20 (4
d - 2 2. 2 4 L sin2- L - + ,ya +-#sin 0 (4)

And the conditions of the existence of the stationary response in the first I
instability region are obtained:

8a a~ 61 17+9 J(00 - C 5)2 0o (5)Irico> - awo +s, - + - -( flw

This is the case of limit cycle of original system. Besides, the responses and

instablity of the various special cases and the bifurcations of the responses are
also discassed.

The short circuit dynamical respouse of the coupledsystom 3
By the numerical analysis on this stiffness equation, a number of results

available forengineering are obtained. 3
I
I
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The Symbolical Analysis of Nonlinear Systems

of Differential Equations

G.S. Osipenko

State Technical University, St. Petersburg, USSR.

The aim of this work is the localization of the set of the chain

recurrent points. The method proposed here permits one to check

the condition of transversality on the chain recurrent

trajectories,

Let us consider a system of differential equations

x=f(x), (1)

where xeM-manifold and f is C1 vector field. Let X(t,x) the

solution of this system and X(x)=X(t0,x), t >0. An infinite

sequence x kI is c-trajectory, if for any k the distance

p(X(X k),x k+)<c. If in this conditions the sequence x kI is

periodic, it's called the periodic £-trajectory. A point x is

called chain recurrent, if for any positive C there exists the

periodic c-trajectory, which passes through the point x.

Let's denote by Q the set of the chain recurrent points.

This set is invariant, closed and contains singular trajectories:

periodic trajectories, almost-periodic trajectories, recurrent

trajectories and so on.

The Construction of the Symbolic Image. Let a collection of

close sells Z={M I..'Mn I be the finite covering of the manifold

M. Let us build the covering Z. of the image X(M.) by cells from
1 1

Z, putting Z. = t M.: M. n X(Mi) e o 1. Let us construct the
1 j 3

oriented graph F , associating to each cell M. the vertex i . The
vertexes i and j are connected by the oriented edge (i,j) only in

case if the cell M. is included in the covering 2.. Such the

graph F is called symbolic image of the diffeomorphism X and



I
dynamical system (1). It. can be said, that the symbolic image is

a finite approximation of the diffeomorphism X. The vertex i of 3
the symbolic image F is called recurrent, if there exists closed
path on F passing through i. Let's denote by P(d) = U M.t M. : i I

- the recurrent vertex 1, where d is the largest diameter of the

cells M.1

Theorem 1. The set P(d) is the neighborhood of the set of

the chain recurrent points, moreover this neighborhood is I
sufficiently small, if the maximum diameter d is small enough.

Theorem 2. The set of chain recurrent points Q= n P(d) for I
d>O

all positive d.

Theorem 3. There exists the algorithm of the construction of

the imbedded neighborhoods of Q Po I>P 1 .> . , such that

lim P k .

k--4 ko

The construction of a linear extension over the symbolical image.

Using the differential OX, for each oriented edge (i.j) a linear

map A(i,j) is associated. It may be said, that the linear maps

A(i,j) are a finite approximation of the differential OX. The 3
oriented graph r together with the linear maps A(i,j) is called

linear extension over the symbolical image.

Theorem 4. If the periodic path ( on F is hyperbolic and the

largest diameter d is sufficiently small, then the system (1) has 3
periodical trajectory and there exists the canonical algorithm of

construction of this periodical trajectory. 3
We created the computer programs for realization of the

algorithms, named here. I

I
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Nonlinear Vibration of a Flexible Connecting Rod

S. Hsieh S. W. Shaw

Department of Mechanical Engineering and Applied Mechanics,

The University of Michigan,

Ann Arbor, MI 48109-2125, U.S.A.

An analytical and computer simulation investigation of the dynamic behavior associated with the

flexible connecting rod of an otherwise rigid, in line, planar slider-crank mechanism is presented.

The main goal is to analyze the flexural response of the elastic connecting rod and determine how

this response depends on the system parameters. Moreover, this work emphasizes nonlinear aspects

of the dynamic response and its associated stability.

The flexural vibration of the connecting rod is described by a single nonlinear ordinary dif-

ferential equation obtained by using single mode Galerkin truncation of a set of nonlinear partial

differential equations. By assuming that the ratio of the crank radius to the length of the connect-

ing rod is small, the transverse deformation is approximated by an asymptotic series expansion,

using the method multiple scales, in terms of this ratio. Several resonances, including the primary

resonance, the principal parametric resonance, and various super- and sub- harmonic resonances,

are investigated in detail. The analytical results are confirmed by extensive numerical simulations.

The analytical results show that response depends, in a nontrivial manner, on several parame-
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ters. These are: the ratio of the crank radius to the length of the connecting rod, the ratio of the U
slider mass to the connecting rod mass, the ratio of the crank speed to the fundamental frequency

of flexural vibration, an internal material damping parameter and slider friction. The effects of

these parameters on the flexural vibration of the connecting rod are investigated analytically and

numerically.. The results indicates that the connecting rod possesses a softening cubic nonlinearity,

with the mass ratio as the primary source of nonlinearity. The internal material damping has a

favorable effect in reducing the amplitude of the response and the instability regions for several

resonances. The slider friction has an adverse effect in that it increases the instability regions for

several resonances, but it also has a favorable effect in reducing the amplitude of the response. It

is also determined that the response amplitude depends in a non-monotone manner on the mass

ratio in certain superharmonic resonance cases. This may be useful in design considerations.

In .summary, this approach demonstrates how one can, in some relatively simple cases, obtain

useful information about the response of flexible links in mechanisms without resorting to finite

element methods or brute-force simulation studies. With analytical expressions in hand, it is a

much simpler task to determine the influence of system parameters on the response, especially in

the important frequency range where resonances occur.

Detailed results from this study can be found in the references given below.

I
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* CHAOTIC MOTION OF A GYROSTAT
SATELLITE IN A CIRCULAR ORBITU

Ardeshir Guran
Dept. of Mechanical Engineering

University of Toronto
5 King's College Road

Toronto, Ontario, Canada M5S 1A4

I Abstract

I According to Kelvin, a gyrostat consists of two parts: a small axisymmetric rotor
inside a large platform. The rotor spins about its axis of symmetry with respect to the
platform. For practical applications we find the platform either at rest or rotating very
slowly, e.g. in the locked rotation. The rotor spins very fast and serves to stabilize the
satellite's attitude.

In recent studies [1], it is found that there exists chaotic motion for spinning satellites
consisting of one rigid body only, i.e. the platform, in a circular orbit. In this paper,
we extend our studies to the attitude motion of spinning gyrostat satellites in a circular
orbit. Here, we only consider the gyrostat satellites with one single axisymmetric rotor
inside an axisymmetric platform under the action of the gravitational torque, where the
axes of symmetry of platform and rotor coincide. The full nonlinear equations of attitude

motion of spinning gyrostat satellites are derived and their Hamiltonian is established,
and subsequently numerically investigated. Various dynamic behaviors of spinning gyro-
stat satellites, e.g. periodic, quasiperiodic, and chaotic are studied via the Poincar" map

technique. The effect of rotor speed on the attitude motion is also studied. It is shown
that the spin velocity of the rotor has a significant effect on the dynamic behavior of
spinning gyrostat satellites, e.g. a chaotic motion will become a regular motion as the
spin velocity of the rotor increases.

I [1] Guran, A. On the Stability of a Spinning Satellite in a Central Force Field, Inter-
national Series of Numerical Mathematics, vol. 97, pp. 149-153, 1991.I
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On the Dynamic Behavior of a Flexible Beam carrying a Moving
* Mass

F. Khalily* M. F. Golnaraghi t G.R.Heppler

I Abstract

The analysis of the dynamical behavior of a flexible structure caused by the motion of masses
that are internal to the system has been of interest for many years [1, 2, 3, 4, 5, 6]. The main
difficulty encountered in this problem lie in the fact that the system of equations of motion are
nonlinear integral/partial differential equations and involve discontinuities.

In this paper a system which consists of a dlamped-free beam and a single moving mass is
considered. The mass is induced to move by an applied force as opposed to the usual case of a
prescribed motion, in which case the position of the moving load is known and is independent
of the motion of the structure. An example of this situation is the behavior of a buldge due
to the motion of vehicles across it [5,6]. However, the system to be discussed in the proposed
paper has the unique characteristic that the motions of the mass and the beam are coupled.

Given the above system, a mathematical model is developed and two coupled integral/partial
differential equations which describe the motion of the beam and the mass are obtained. Since
the equations of motion are coupled, nonlinear and have both time and space dependencies, it is
difficult to solve them analytically. Furthermore, the equations are difficult to solve numerically
in their original form. Therefore in our approach the set of partial differential equations were
reduced to a set of ordinary differential equations by using the Method of Virtual Work and
adopting a trial solution that assumes separation of time and space. Under this assumption thesolution for the beam motion is deemed to have the following form:

UW(:, t) -= k (Zs )Tj t)(1

where W(z, t) represents the deflection of a point on the beam which is located at distance z
away from the damped end of the beam at time t, Ij (z) is the jth modal function which satisfies
the boundary and transient conditions and TI (t) is the modal coordinate for the P' mode. In this
approach Ii(z) is assumed to be a known function, therefore by replacing W(x,t) by the series
(1) the explicit spatial dependency of the equations vanishes and a set of ordinary differential
equations which have only explicit time derivatives are obtained. As it was mentioned before,
knowing the modal functions is crucial to solving the equations of motion. For the problem to
be discussed in this paper the modal function, $3(z), is not only a function of position z but

"Graduate Research Assistance, Mechanical Engineering, University of Waterloo,Waterloo, Ontario, CANADAI N2L 3GI
tAssistant Professor, Mechanical Engineering, University of Waterloo, Waterloo, Ontario, CANADA N2L 3G1
*Associate Professor, Syst-ims Design Engineering, University of Waterloo, Waterloo, Ontario, CANADA N2L
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it also depends on the changing position of the mass. Therefore in order to calculate the exact
modal function the beam is divided into left and right parts with respect to the mass:

ýtjL(X) = Al(m,,,)sin(3z))+A2 (zm,)cos(/Z)+AA(nm,,)sinh(!3Z)+A 4 (z,,.) cosh(3z) 0 < z < Z,
(2)

4iR(Z) = Bi(z,,,) sin(3z)+ B2 (z,,.) cos(C3z)+ B3(zx,) sinh(f3x)+B 4(z,.) cosh(o3z) z,,, < x < L
(3)

The functions Aj(xm), Bi(x,,), i = I,.., 4(zm is the position of the mass) are determined using
the boundary conditions and the continuity conditions at the mass. The overall displacement
field must have a discontinuous second and third derivative. The discontinuous second derivative
is due to the inertial moment supplied by the mass which is modelled as a rigid body, while the
third derivative condition arises from the change in the internal shear force at the location of
the mass due to the inertial forces. The discontinuity conditions in addition to the boundary
conditions applied to equations (2) and (3) result in a transcendental equation whose solution
can be used to obtain the natural frequencies of the beam. Since all the above functions and also
the natural frequency of the system depend on the position of the mass, a computer program
has been developed to calculate these parameters as the mass moves. Hence, we can obtain an U
exact modal function at any instant and the form of that function depends on the position of
the mass.

Once the mode shapes have been determined it is possible to determine the dynamical
behavior of both the mass and the beam as the mass moves under the applied load. It is then
possible to use this simulation to assist in the design of control strategies that will minimize
the effect ofthe motion of the mass or that will utilize the motion of the mass to damp out
unwanted vibrations in the beam. I
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A GEOMETRICALLY-EXACT BEAM THEORY
ACCOUNTING FOR WARPINGS AND 3-D STRESS EFFECTS

Perngjin F. Pai and Ali H. Nayfeh
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

A nonlinear curved and twisted beam can be used to model helicopter rotor blades, avi-

ation propeller blades, turbine blades, aircraft wings, arm-type positioning mechanisms

of magnetic disk drives, robot manipulators, helical springs, etc. Moreover, beam-type

elements are usually used in material characterization as well as basic structural ele-

ments.

A geometrically-exact nonlinear beam model is developed for naturally curved and

twisted solid composite rotor blades undergoing large vibrations in three-dimensional

space. The theory accounts for in-plane warpings due to bending and extensional

loadings, out-of-plane warpings due to shearing and torsional loadings, elastic couplings

among warpings, and three-dimensional stress effects by using the results of a two-

dimensional, static, sectional, finite-element analysis. Also, the theory fully accounts for

extensionality, initial curvatures, and geometric nonlinearities by using local stress and

strain measures and an exact coordinate transformation, which result in fully nonlinear

curvature and strain-displacement expressions. Six fully nonlinear equations of motion

describing one extension, two bending, one torsion, and two shearing vibrations of

composite beams are obtained by using a combination of the extended Hamilton prin-

ciple and the concept of virtual local rotations. The equations display linear elastic

couplings due to structural anisotropy and initial curvatures and nonlinear geometric

couplings. The theory contains most of beam theories as special cases. Moreover, the

formulation is based on an energy approach, but the derivation is fully correlated with

the Newtonian approach and the final equations of motion are put in compact matrix

form.



I

Geometric nonlinearities due to large rotations couple the equations of motion. I
Moreover, because of anisotropy and initial curvatures, bending, torsional, and exten-

sional vibrations of a composite beam can be linearly coupled. In the presence of linear

elastic and nonlinear geometric couplings, the response of a beam can be a very com-

plicated three-dimensional motion. The forced nonlinear vibration of a symmetrically

laminated graphite-epoxy composite beam is investigated. The analysis focuses on the

case of primary resonance of the first flexural-torsional mode when its frequency is ap-

proximately one-half the frequency of the first out-of-plane flexural mode. Period- I
doubling bifurcations and chaotic motions are addressed.
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Experiments on the Nonlinear Resonant Response of Thin Elastic Plates

by S.A. McCabe, P. Davies, S.I. Chang, and A.K. Bajaj,

I Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University,
West Lafayette, Indiana, 47907-1077. Telephone: 317-494-9274.

1 The nonlinear vibratory behavior of thin elastic plates has been studied in detail
by many researchers [1]. When the natural frequencies of the plate are well separatedI and the plate is excited by a sinusoid with a frequency close to a resonance frequency,
the behavior of the plate can be modeled as an oscillator with a cubic stiffness term.
Further theoretical studies have been carried out on thin plates where two or moreI modes of the plate have coincident frequencies. When such plates are excited
harmonically near the coincident natural frequency, the response of the plate can be
reasonably well modelled as a nonlinear multi-degree-of-freedom system of order
equal to the number of coincident modes. Two of the authors have studied the
behavior of this simplified model for the case where the (1,2) and (3,1) modes of a thin
pinned-pinned rectangular plate are coincident [2]. Expressions have been derived,
through the method of averaging, that show the slow time evolution of the amplitudes
of the modal responses of the plate as a function of the excitation frequency and
amplitude, and the modal damping.

Having predicted theoretically the behavior of thin rectangular plates, it is
important to ascertain if similar behavior can be observed in an actual experiment.
Ultimately, the goal is to model and analyze the behavior of nonlinear physical
systems. Therefore, it is important to show that the theoretical models are useful for
the analysis of plates in real systems. A rig has been constructed to examine the
behavior of thin plates under in-plane tension loading. The rig is similar to that
constructed by Yasuda and Asano [3]. The behavior of the plate in the experimental rig
differs from the theoretical behavior because there are variations in the boundary
conditions, the tension is not uniform across the plate, and the actual boundary
conditions are closer to those of a clamped-clamped, rather than a pinned-pinned, plate.
The plate was placed in tension so that the (1,2) and (3,1) modes had nearly coincident
natural frequencies and the frequencies of the (1,1) and (2,1) modes were well separated.

Intuitively, it can be expected that the plate behavior predicted by the theoretical
models will be dose to that observed when either of the first two modes is excited near
its resonance frequency, because the behavior is relatively insensitive to the mode
shape. However, for harmonic excitation of coincident modes, the nonuniformities in
the plate boundary conditions and tension, which give rise to nonuniformities in the
plate mode shapes, can cause severe problems. In the development of the theoretical
equations the response of the plate was decomposed into a contribution from each of
the two modes: w(x,y,t) = X1(t. F12(xy) + X2(t).F 31(x,y) where Fmn(x,y) denotes the mode
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shape of the (m,n) mode, and (x,y) are the co-ordinates of the measurement position on
the plate. w(x,yt) can be measured at different locations and, if the mode shape is
known, X1 (t) and X2 (t) can be calculated. Ideally, one measurement location would be
on a nodal line of the (1,2) mode and the other on a nodal line of the (3,1) mode. It is
therefore crucial that Fmn(xy) be known so that X1(t) and X2(t) can be observed
independently and the theoretical predictions can be directly compared with the
measurements. Because of the problems associated with boundary conditions and
tension, however, it may only be possible to get qualitative agreement between the U
analytic predictions and the measured responses.

Ultimately, the goal of the research is to observe the complex motions predicted
by the coincident mode theory. As a preliminary step, the behavior of the plate close to
its first and second natural frequencies was examined in detail. Mode shapes were
calculated from impact test measurements of the plate and also from exciting the
system sinusoidally at the resonance frequencies. Nonlinear Autoregressive Moving
Average (NARMAX) system identification techniques [41 were employed to confirm the
theoretical Duffing's model of the plate in these modes of excitation and also to 1
estimate the physical parameters of the system. This was done at several locations over
the plate to investigate variations due to nonuniformities in the test rig construction.
The analysis was performed for both the (1,1) and (2,1) modes to investigate the increase
of sensitivity with frequency of the mode shapes to nonuniformities in the boundary
conditions. Graphs of amplitude of response versus excitation frequency were also
plotted from the experimental data and compared to those predicted theoretically. 1
Preliminary analysis of the coincident mode behavior under sinusoidal excitation isalso included.

[1] A.H. Nayfey and D.T. Mook, Wiley Interscience, New York, 1979. Nonlinear
Oscillations.

[21 S. I. Chang, A.K.Bajaj and C.M. Krousgrill, paper submitted to Nonlinear
Dynamics, November 1991. Nonlinear Vibrations and Yhaos in Harmonically 3
Excited Rectangular Plates with Internal Resonance. C1

[3] K. Yasuda and T. Asano, Bulletin of JSME, Vol 29, September 1986, pp. 255-50.
"Nonlinear Forced Oscillations of a Rectangular Membrane with Degenerate 3
Modes.

[4] S.A. McCabe, P. Davies and D.K.Seidel, Proceedings of the 1991ACC, pp. 1758-
1763. On the Use of Nonlinear Autoregressive Moving Average Models for 3
Simulation and System Identification.
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PARAMETRICALLY EXCITED NONLINEAR
VIBRATIONS OF COMPOSITE FLAT PANELS

EXHIBITING INITIAL GEOMETRIC IMPERFECTIONS

AND INCORPORATING NON-CLASSICAL EFFECTS

By

L. Librescu and S. Thangjitham

Virginia Polytechnic Institute and State University
Department of Engineering Science and Mechanics

Blacksburg, Virginia 24061-0219

ABSTRACT

The non-linear transverse response of flat composite panels subjected to

in-plane periodic compressive edge loads is investigated. The influence played by a

number of non-classical effects, namely by transverse shear, higher-order effects,

unavoidable initial geometric imperfections and the character of in-plane boundary

conditions is emphasized and a number of conclusions are outlined.

In contrast to the case of geometrically perfect panels where the parametric

response problem is governed by homogeneous differential equations with periodic

coefficients and where the transverse vibrations are exhibited over certain regions of

the load amplitude-frequency space, in the case of initially imperfect panels the

transverse vibrations occur at all load amplitudes and frequencies.

The results obtained in the case of columns with initial curvature excited by

periodic axial loads [see Mettler (1967) and Stevens (1969)] reveal that, as in the

case of their perfect counterparts, the resonances still appear at 0 - 2fl/k

(k = 1,2,3 ... ). Moreover, the theoretical and experimental results reveal that in the

vicinity of odd--order resonances (k = 1,3,5 ... ), the imperfections have little effect

on the response whereas in the vicinity of the even-order resonances (k = 2,4,6 ...),



I

the amplitude of imperfect columns increases rapidly as the boundary of the

corresponding instability region for the perfect column is approached.

Since the second-order resonance (0 z 1l) is the most significant of the

even-order resonances in the sense that it yields the largest vibrational amplitudes 3
[Mettler (1967)], this case will be considered in conjunction with the parametric

resonance of shear deformable panels exhibiting initial geometric imperfections. In

addition, for the sake of completeness some additional results which concern the

influence of transverse shear deformability and the character of in-plane boundary

conditions on the amplitude-frequency behavior of perfect panels at the first 3
parametric resonance region (k = 1) will be presented.

To the best of the authors' knowledge, this paper addresses for the first time I
the problem of the influence of initial imperfections coupled with that of transverse

shear flexibility on the parametrically excited nonlinear vibrations of composite

structures. i
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Large Flexural Vibrations of Thermally
Stressed Layered Shallow Shells

R_ HEUER

Civil Engineering Department, Technical University of Vienna,
Wiedner Haupstrae 8-10/E201, Austria, A-1040

Abstract

Based on a procedure developed for isotropic plates /1/, the scope of this
paper is to derive a unifying representation of the influence of large
amplitudes on forced vibrations of shallow shells with arbitrarily shaped
polygonal planform. Moderately thick shells composed of multiple per-
fectly bonded layers are considered. A distributed lateral force loading is

applied to the structure, and additionally, the influence of a static thermal
prestress, corresponding to a spatial distribution of cross-sectional mean

temperatures, is taken into account. The shell edges are assumed to be
prevented from in-plane motions and are simply supported. The geome-

trically nonlinear problem of large amplitude vibrations is treated by

means of the Karman-Tsien theory, modified by the generalized Berger-
approximation that is suitable for shallow shells with Immovable edges.
Shear deformation is considered according to Mindlin's kinematic hypo-

thesis.

Furthermore, in the special case of laminated shells made of isotropic
layers with physical properties symmetrically disposed about the middle
surface, a correspondence to moderately thick homogeneous shells is

found.



U

A multi-mode expansion in the Galerkin procedure is applied to the 3
governing differential equation of the nonlinear forced shell vibrations,
using the eigenfunctions of the corresponding linear plate problem. A

coupled set of ordinary time differential equations for the generalized

coordinates with cubic as well as quadratic nonlinearities results.

For a qualitative study, the nonlinear steady-state response of shallow
shells subjected to a time-harmonic lateral excitation is investigated. With
respect to the phenomena of primary resonance, a single-term approxi-

mation is used and the solution of the corresponding problem is obtained 3
by means of the "perturbation method of multiple scales" according to
Nayfeh and Mook /2/. A unifying non-dimensional representation of the

nonlinear frequency response function is presented, that is independent
of the special shell planform. The individual shape of the shallow shell
enters the transformation into real time through the linear natural fre-
quencies, or equivalently, through the linear eigenvalues of an effectively
prestressed membrane, that is as shaped as the shell's base plane. 3

I
U
I
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Experimental High Speed Response of a Slider Crank

David Beale, Assistant Professor
David Halbig, Graduate Student
Department of Mechanical Engineering
Auburn University, Auburn, Al, 36849-5341I

A slider crank mechanism has been constructed for the expressed purpose of

I investigating very high speed elastic phenomena. These features include 1) a combination

flywheel and crank that possesses a large moment of inertia and adjustable crank length, 2)

a 1/16 inch thick rod made of high strength Aluminum alloy to allow for deflections that will

I exceed 10 percent of the rod length without yielding, and 3) a piston connected by nearly

frictionless bearings to steel rods that serve as the piston slide axis. The mechanism is driven

by a 1/2 HP DC motor whose speed is controllable by a potentiometer. A steel case with

a plexiglass shield for viewing enshrouds all moving parts for protection of the operators.

Signals from two or three strain gages mounted onto the rod (fed through a strain gage

conditioner), and magnetic signals that sensed crank rotations, were converted from analog

to digital and stored on a 286 computer.

I A series of experiments were performed, beginning with a very small crank length

I (approximately 1/40 the rod length), and increasing to a crank length of approximately 15

percent of the rod length. In all cases, response at any given speed increased with crank

length. For the very small crank, speeds approaching 2000 rpm (80% of the rod natural

frequency) were obtained. In all experiments, a zone of increased response occurred at

crank speeds near 1/2 the natural frequency of the rod. For intermediate size cranks, period

I doubling occurred at speeds beyond the first natural frequency. In one instance, it was

possible to slowly increase the speed and pass through the zone of period doubling, followed

U
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by a zone of vibrations again equal to the crank period. The onset of period doubling

occurred at lower crank speeds when the crank length increased. At the largest crank sizes

period doubling disappeared. In those cases the rod yielded at crank speeds below those

necessary to induce period doubling.

The operating mechanism will be videotaped using a high speed camera for

presentation at the conference.
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Steady State Response of a Slider Crank with Flexible Rod

David Beale, Assistant Professor
Shyr-Wen Lee, Graduate Student
Department of Mechanical Engineering
Auburn University, Auburn, Al. 36849-5341

The flexible rod slider crank mechanism has been the subject of numerous

investigations of response and stability. The mechanism includes a rigid crank that rotates

at a constant angular velocity, a flexible rod modeled as an Euler-Bernoulli beam, a piston,

and an external force on the piston. In this work an investigation of nonlinear steady state

stability and bifurcations of this system is performed based upon a one mode approximation

to beam bending. Based upon response investigations presented by other authors, which

revealed that flexible rod transverse vibration was the same period or twice the period of

the crank rotations, a steady state solution of the following form was assumed:

-- ao + a/2cos-ý + b,/2sin- + atcost + btsint + ascos5t +2 nbsin5t

Harmonic balance is next applied to find steady state solutions necessary for linearization.

Nonlinear and linear terms in the ODE that would otherwise burden harmonic balance are

incorporated into another truncated series like Equation (1). The coefficients of both

equations are solved using the computational Harmonic Balance/Fast Fourier Transform

(HBM/FFT) scheme, which includes a Newton-Raphson solver for solution of nonlinear

algebraic equations in the trigonometric coefficients of Equation (1). Linearization is

performed about this steady state solution. The perturbational equation contains periodic

coefficients, and so monodromy matrix methods were applied to computationally determine

the eigenvalues that determine stability. Plots of crank speed versus vibration amplitude
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were presented, that also pinpoint saddle-node (jump) bifurcations, flip (period doubling)

bifurcations, and regions of amplified response. I
Six cases were studied. In the first case, the crank is small, with no piston mass or

external gas force. The response was amplified near crank speeds equal to the first natural

frequency of the rod in bending. In the second case, the piston mass is included. The peak U
response occurred at a speed less than the first natural frequency, reflecting a speed induced

decreased natural frequency. In Cases 3 through 5, the crank size was increased from small

(as in perturbational methods) to 1/2 the rod length, and the external gas force added to the

piston in all three cases. The larger crank size induced more severe nonlinearities at lower

crank speed. Saddle-node and period doubling bifurcations occurred in Cases 4 and 5. In

Case 5, noticeable "irregular resonance" due to amplified superharmonics occurred at crank

speeds near 1/3 and 1/4 the rod natural frequency.

U
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The Inter-relation between Multidbody Dynamics Computation ani
Nonlinear Vibration Theory

A. P. Kovacs and R. A. Ibrahim
Wayne State University

Department of Mechanical Engineering
Detroit, Michigan 48202

Abstract
This paper revisits the formulation and numerical solution of the Autoparametric Vibration

Absorber (AVA) introduced by Haxton and Barr (1971). The study is mainly applied with
reference to multibody dynamics theory. Using Lagrange multipliers the equations of motion are
written in multbody dynamics terms giving a coupled set of differential and algebraic equations of
motion to be solved by a Gear stiff integrator and the ADAMS program. The paper will show the
equivalence between the equations of motion for two formulations; the Haxton and Barr
formulation using minimal coordinates and the ADAMS formulation using Lagrange multipliers
and constraint equations. It will explain the physical interpretation of various nonlinear forces
found in the Haxton and Barr equations, showing their evolution from a constraint-equation. The
model will evaluate data over a sequence of damping ratios and applied forcing frequencies in
agreement with the Haxton and Barr test parameters. Finally, response plots will show how the
Haxton and Barr numerical approximation can be derived by ignoring one nonlinear force term in
their formulation.

Tne analysis introduces the concept of constrained flexibility. This is a modeling technique
that combines the lateral elastic stiffness of a cantilever beam with an algebraic nonlinear axial
displacement constraint between two rigid bodies. This technique follows from the constraint
application required to reduce the system to the necessary two degrees of freedom and suggests
future utility in the modal analysis of multibody systems.

The analysis also includes the use of an instantaneous energy checking function to
improve integration parameter selection in the numerical scheme. Finite difference methods for
solving continuous, ordinary differential equations may introduce spurious solutions. This
complex source of trouble can be a function of stepsize, error tolerance and predictor polynomial
order combined with nonlinear equations. Consequently, the equations of motion and constraints
are not sufficient to insure computed accurate answers. The energy balance checking function
uses computed body velocities and positions from the numerical solution. It also monitors the
accumulated or global energy error at any simulation time. If the energy error is large artificial
energy is introduced by the numerical method and adjustment is made to the integration control
parameters.

References
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STEADY-STATE ANALYSIS OF LARGE SCALE MULTIBODY SYSTEMS

WITH SPECIAL REFERENCE TO VEHICLE DYNAMICS I
Jong-Nyun Lee

Parviz E. Nikravesh

Department of Aerospace and Mechanical Engineering I
The University of Arizona

Tucson, AZ 85721 3

ABSTRACT

In some applications of multibody systems, it is necessary to determine the steady

state response of a system under given conditions. For highly simplified problems, I
it may be possible to write and solve the steady state equations in explicit form.

However, for large scale problems without too many simplifications, finding a

closed form solution is not possible, and furthermor-., determining a numerical 3
solution may not be easy if the problem is not properly formulated. This paper

presents a systematic method for formulating and numerically solving the steady

state equations for multibody systems. The equations of motion are first written in

terms of relative joint coordinates using velocity transformation formulas. Then, I
conditions for a given steady state response are introduced into the equations of 3
motion in order to obtain the steady state equations. For example, for a

nonperiodic steady state response, accelerations can be generally zero, velocities

can be zero or constant, and in addition, specific relationships can exist between

some or all of the coordinates. Such conditions transform the differential equations I
of motion into a set of nonlinear algebraic equations where the unknow,'S are all of

the coordinates and some of the velocities. These equations are solved

numerically using the Newton-Raphson method. If the original equations of motion 3
are expressed in terms of a large set of dependent Cartesian or absolute I

I
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'1 coordinates, the steady state conditions can not be stated easily and, hence, the

procedure for finding the steady state configuration can become cumbersome.

However, when the equations are expressed in terms of a relative set of joint

coordinates, these relationships are rather obvious and simple to introduce.

One applications of this methodology is in vehicle dynamics. A vehic'e

maneuvering a circular path with a constant speed is one example of the steady

state response. In this paper, a complete multibody model of a four-wheel vehicle

including the suspension and the steering systems is described. The interacting

nonlinear forces and moments between the tires and the road, due to the

longitudinal slip, lateral slip, and camber angle are incorporated into the model.

The steady state response of the vehicle for different speeds and different steering

angles are presented. Also the two-wheel and four-wheel steering responses are

compared. The results are further compared for accuracy and efficiency against

those obtained from solving the dynamic equations of motion.

I
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ITERATED MAPS IN THE PERIODIC RESPONSE OF
A TWO DOF ELASTOPLASTIC SYSTEM

Danilo Capecchi and Fabrizio Vestroni

Dipartimento di Ingegneria delle Strutture, Acque e Terreno
University of L'Aquila - 67040 Monteluco di Roio (AQ) - ITALY

Quite a number of papers have been written on the periodic solutions for
multi-dof nonlinear elastic systems, usually of a low order, using both per-
turbation and harmonic balancing techniques. The response appears richer
than for the one dof oscillator. Moreover, besides the super and subharmonic
resonances and the occurrence of chaotic motion, phenomena due to internal
resonance and combination resonance are also possible.

On the contrary only few papers exist regarding hysteretic oscillators
with more than one dof. Here the periodic solutions are only found with the
harmonic balance method, that in its standard formulation - one frequency
only - does not allow to catch the whole aspect of the response. In particu-
lar the internal resonance effects are not evidenced, and then this standard
formulation can not be used when there is an important resonant coupling.
This inconvenience can be overcome if more frequencies are taken into ac-
count. That, however, brings to complex algebraic equations whose solution
has to be determined numerically and then a qualitative analysis becomes
more difficult.

In this work a two degree elastoplastic system under harmonic excitation
is studied with a numerical technique which allows a qualitative analysis as
well. The assumed tool is the Poincar6 map P together with some other re-
turn maps connected with it. In such a way the periodic response is studied,
at least formally, with purely algebraic procedures. The Poincare map for
a periodically forced system is simply defined as the function which maps
the phase space in itself giving the position that a point p reaches after the
integration of the motion equation over one period of the external force time.

To eliminate as more sources of errors as possible, the numerical integration
is carried out exactly. That is possible because in each plastic phase - i.e.
in each combination of yielded plastic forces - the elastoplastic system be-
haves linearly. The only difficulty lies in the identification of the transition
to the various plastic phases that requires solution of simple nonlinear equa-
tions. The periodic solutions are the fixed points of P and the stability is
simply checked looking at the eigenvalues of the tangent map TP of P. The
phase space has dimension four, and is defined by the velocity vi of the two
masses and by the two forces fi of the elastoplastic elements. The displace-
ment, being unessential for the constitutive relationship which is expressed
in incremental form as fi = h(fj,sign(vj))vj (i=1,2), is not assumed as an

U
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independent variable. Its history can simply be obtained by integration of
the velocity history.

Some problems rise in the use of the Poincare map P as a matter of
fact that it is not a diffeomorfism. More precisely P is continuous with
its derivative, with the exception of a limited number of points, but it is

not invertible. That because the condition of Cauchy-Lipschitz for a unique
solution to exist, is violated. Another difficulty is due to the existence of
boundaries in the phase space as the f, cannot exceed their limit values. 3
These problems are by-passed with the introduction of alternative return
maps that have a lower dimension space as domain. Where the periodic

motion under examination requires to pass the plastic value for only one I
force f, then the phase space dimension is reduced by one otherwise it is

reduced by two. The state variable that is eliminated is precisely the force
that reaches the limit plastic value.

The examination of the frequency response curves for the two dof sys-
tem here considered, obtained varying the frequency w of the external force,
shows as the influence of internal resonances can not be disregarded unless
the modal coupling is very low. Differently from the elastic nonlinear case
the effect of internal resonances is shown only in a superharmonic fashion.
Namely, if the ratio of the two natural frequencies w, and W2 is close to three
and the external force is resonant with the first mode, w n- w1, a compo-
nents 3w comes up. Instead if the resonance for the second mode is assumed, I
W ! W2 , the component 1/3w is not shown whichever the initial conditions
are. Another peculiarity of the hysteretic systems is the way the energy is
distributed between the two modes. In presence of internal resonancese, for
w = w1, there is a sharp energy absorption by the 3w component at the
expense of the fundamental one. That results in a sharp decrease of the 3
amplitude of the first mode. Consequently the frequency response curves
show two apparent maxima both in the fundamental mode and in the total
response. This situation gives problems in system identification applications
where the frequency response curves are obtained experimentally because the
two peeks are seen as two different natural frequencies.

The stability analysis, made by checking the eigenvalues of TP indicates I
that the frequency response curves are always stable. Then, besides of being
single valued, they do not present bifurcations corresponding to asymmetric

or quasiperiodic solutions. The possibility for the existence of insoles cannot
be excluded at this phase of the research, as the occurrence of subharmonic
orbits cannot be excluded as well. However an extended numerical survey

has not shown something like that yet.
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Analyticul Construction of the Two-Parameter Family of

Quasiperiodic Solutions in the Autonomous System.

Jan AWREJCEWICZ and Tsuneo SQNEYA

The Univer-sity of Tokyo, Research Center- for- Advanced
Science and Technology, Komaba, MegWun-o-ku, Tokyo 153, Japan.

Consider the following nonlinear dynamical system

-- s = 1 ..... (1)

For C-0 and •=0 we have = and the frequencies (.u, are
incommensurable and positive, i.e.

((k,,w)) = ku&I ++k2 W?2+...+k,,Lu. A 0; (2)

E and P are certain small and independent perturbation
parameters with E•(OEo] and ([.•o]. We want to find the two
parameter family of quasiperiodic orbits defined as follows

X, =

-- U),

Q'( E.. . P)

- Q•,+•Io(OI ... .. .) I

÷W¢ , +. € ÷ 0 "101 + I I I. .

s = I,....n, (3)

where:

Q10 ErcaOs,+CrsIn4,,

. . ,,,1 = Q'( ÷2it..... 2i ,•,l,). (4)

We take the arbitrary condition

___(_...._O,._ 0 = 0, s = n'....n, (5)
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and from a first reccurent equation we find

P (,... B,) = f . ••~ n~¢... f • = 0, (6)

Zi. nx

a d=o (2a1)," B "" FW0 - O S ¢,' -" t 0, s=i (7)

and I
0'(B, .... BG,) = .. "' S (9)o, .... u Ui"i .d ,-d • O 8

not =( 2 ft)AW : fo" cos4,d¢..a¢ O,s=1 . n. (9)

From (6) and (8) we find B.. BA' and BI. B, respectively.

io and •'l ar-e obtained from (7) and (9).

The next recurrent equations allows for finding i.o 1, I
whereas B,'0° 0 ') are obtained from (5). To achieve a compolete
ordering of all of the recur-rent eqLat0ion we take the fol-

lowing additional condition E'=' <q.,', (!C)

where j is a positive integer. The t-iangle below gives the 1
ordering from the smallest to the largest asymptotically on
each horizontal row, i.e. defines the sequence of recurrent

equa ti on s

3 IE2 C21 C3

44 EtL3 e. L2P2 E3 E4I

The presented approach is illustrated by the example of two
degrees of freedom mechanical system, where the dampers
parameters play the role of independent perturbation parame-
ters. Additionally, the catastrophes of tori are classified
and discussed. 3
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CONSTRUCTING INVARIANT TORI FOR TWO WEAKLY COUPLED

VAN DER POL OSCILLATORS

David E. Giliim

National Institute of Standards and Technology

Gaithersburg, MD 20899

A pertuibation algorithm is developed for the direct construction oi an invariant torus oi a

weakly coupled autonomous oscillator. The algorithm incorporates an averaging procedure

to select the coefficients for the expansion. it is applied to a system of nonlinearly coupled

van der Pol equations.

.. ~ 9 2 2,, 2  , 2 2(.u1z• = , -h -az )'!-;2 + . Z2 = C(I-az - '•z 2

where a > 0, a > 0 and #, > 0, and 02 > 0 are linearly independent over the integers,

Introduce coordinates r and j into (3). The new system becomes

a+ i- c4(4,r), r = R(4,r). (2)

Define the average of R(4,r) from (5) by R0 (r). 4 and R in (2) are periodic in 4 with

vector period a(21/#,2r T (T 1, 2 )T. Let r(0) be a vector such that Rk(r 0 )) = 0

and the real parts of the eigenvectors of Mol/&r have nonzero real parts. Then there is a

vector function r(4,c), periodic in j with vector period (2T1ji,2wI 2 ) , r(4,0) = r(0) and

44,C) is an invariant torus for (2).

To begin with the construction assume an expansion for r = ,(4,i) in the form

S=o•W (n)c÷
r= I ir (n ) (3)

n=O



where we seek r(u)(#), n 0, 1, ... , each with vector period (2,'i.,,r/p, . Sbstituting

this in (2) gives the following sequence of partiai difierentiai equations

61 r ( 0) dI =0r d fl~(0)) a Br()3
a,(o a,()ro0,o_ P(J,.r(o)),

(4)

a2 Br( n) a -n-i n) ,(n..k) m

0 X d a ($,r 1)r ...r

for i > 2. Now define the matrix m

2w/p 1  21r/# 2 'R (0)~~) dO, d02 ()

0 -0 -J

Theorem. If R0 (r(°)) = 0 and (5) is nonsingular then (4) can be solved sequentially for m
r(O), r(), ... , each of vector period (27/Pl,2r//2).

A numerical study is done of some of the characteristics of the flows on the torus.

These include a comparative analysis of integrating the van der Pol system on the torus

with integrating the phase equations on the approximate torus. A Fourier analysis of the

dominant frequencies in the approximate solution as well as a computation of the rotation 3
number of the phase equations on the torus are performed.
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NORMAL MODES FOR WEAKLY
NONLINEAR DYNAMICAL SYSTEMS

Steven W. Shaw, Associate Professor
Christophe Pierre, Associate Professor

Department of Mechanical Engineering
and Applied Mechanics

The University of Michigan
Ann Arbor, MI 48109

Abstract

The concept of normal modes of motion is well developed for linear systems, due to the special
features of the linear differential equations which govern their dynamics. These special features
allow for a definition of normal modes in terms of eigenvectors (or eigenfunctions) and the
expression of an arbitrary system response as a superposition of modal responses (see, for
example Meirovitch, 1967). A normal mode motion for a system is one which is governed by a
single degree of freedom oscillator.

It is obvious that no complete analogy of linear modal analysis can exist for nonlinear systems,
simply because superposition does not hold. However, many of the relevant ideas can be
generalized. For example, much work has been done on the existence and stability of normal
modes of motion for two degree of freedom, conservative systems (see, for example, Rosenberg,3 1966, Rand, 1971, and Vakakis, 1990). The purpose of the present work is to generalize these
definitions to a very wide class of systems which includes nonconservative, gyroscopic, and
infinite dimensional systems (Shaw and Pierre, 1991a, 1991b). In particular, we (1) formulate a
definition of normal modes for a general class of nonlinear systems, (2) develop a constructive
technique for obtaining these modes for weakly nonlinear systems and, (3) generate the
differential equations which govern the dynamics of the system when it is undergoing a normal
mode motion. This development clearly demonstrates the origins of the usual normal modes
which exist in linearized systems and it also points out the limitations of modal analysis
techniques for nonlinear systems.

In order to extend modal analysis ideas to nonlinear systems, an approach which is fundamentally
different from the usual separation of variables and resulting eigensolutions must be adopted.
Such an approach is offered by defining normal modes in terms of motions which occur on low
(typically two) dimensional invariant manifolds of the system's phase space. Such a motion must
be inherently like that of a lower dimensional system, and this is ,exactly what is desired for a
normal mode motion. A constructive technique for generating such manifolds in terms of
asymptotic series, without having to solve the equations of motion, is provided by a simple
generalization of the method used in constructing approximate center manifolds in bifurcation
theory (see Carr, 1981). Using this approach we are able to determine the manifolds which
represent normal modes for weakly nonlinear systems. The equations of motion restricted to3 these manifolds then provide the dynamics of the associated normal modes.

I
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For vibratory systems these manifolds are two dimensional and the modal dynamics on them are
governed by second-order, nonlinear oscillators. From these manifolds one can deduce the
physical behavior of the system undergoing a purely modal motion and, in particular, the
amplitude-dependent mode shapes can be obtained. From the nonlinear modal oscillators one can
obtain information about the amplitude-dependent frequencies and decay rates. For an N degree 3
of freedom system (N finite or infinite) there exist N such nonlinear normal mode manifolds. The
tangent planes to these manifolds at the equilibrium point are the planes on which the usual modal
dynamics of the linearized system take place, i.e., they are the eigenspaces. 3
The above issues are examined in detail for example problems including the vibrations of systems
with finite and infinite degrees of freedom. 3
References 3
J. Carr 1981 Application of Centre Manifold Theory, Springer Verlag, Berlin, Heidelberg, New

York.I

L. Meirovitch 1967 Analytical Methods in Vibrations, Macmillan, New York.

R. H. Rand 1974 A direct method for non-linear normal modes. International Journal of Non-
linear Mechanics 9, 363-368.

R. M. Rosenberg 1966 On non-linear vibrations of systems with many degrees of freedom.
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S. Shaw and C. Pierre 1991a "Normal modes for nonlinear vibratory systems," to appear in the
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Mode Localization In A System of Two Coupled Beams
with Geometric Nonlinearities

M.E. King and A.E Vakakis
Department of Mechanical & Industrial Engineering

University of Illinois at Urbana-Champaign

Localized nonlinear normal modes have been shown to exist in discrete
nonlinear periodic oscillators [1,2]. In this work, nonlinear mode localization
is studied for a system of two identical, linearly coupled, weakly nonlinear,
inextensible cantilevered beams. Nonlinear curvature and inertial terms are
included in the analysis and the free response of the system is investigated by
the method of multiple scales.

Using a Galerkin approximation, the first three linearized modeshapes
and natural frequencies of the cantilevered beams are computed. The first
phase of the work investigates the free response of the 1st mode
approximation. Localized solutions are found which branch at a critical value
of the coupling parameter off the antisymmetric mode of the system through
an inverse pitchfork bifurcation. For coupling parameters above this critical
value, the antisymmetric mode is found to be stable. At the point of
bifurcation, the antisymmetric mode loses stability and the two bifurcated
localized solutions are orbitally stable.

The second phase of the work investigates the effect of internal resonance
(which arises due to a 3:1 ratio between the 3rd and 2nd linearized natural
frequencies) on nonlinear mode localization. Various combinations of modes
are found in which the oscillations of the 2nd and 3rd modes are mainly
confined to only one of the two beams. Thus, the energy of the system is
found to be spatially confined during these motions. In addition, other
solutions were found in which "weak" localization takes place: that is, only
one of the two modes localizes. The stability of these modes is then studied.
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MULTIBODY DYNAMICS OF AIRCRAFT OCCUPANTS

SEATED BEHIND INTERIOR WALLS

H. M. Lankarani, Assistant Professor
Deren Ma, Research Assistant

Rajiv Menon, Research Assistant

Mechanical Engineering Department, Box 35
National Institute for Aviation Research

The Wichita State University

Wichita, KS 67208
(316) 689-3402

ABSTRACT

3 Airworthiness is defined as the ability of an aircraft structure to provide maximum
opportunity for survival of its occupant during crash (impact). The complex subject of

I aircraft design for impact protection is truly interdisciplinary, encompassing a variety of field
including biomechanics, multi-body dynamics, occupant motion simulation, impact-related
injury criteria and finite element methods of structure analysis, etc. One important aspect
of these general studies is to reduce head injuries to an aircraft passenger in case of a head
contact with its surroundings. In view of the importance of this, studies of post-crash

I dynamic behavior of victims and the compliance characteristics of the aircraft bulkhead are
necessary in order to determine the mechanisms that cause the head injuries and to keep

i the Head-Injury-Criteria (HIC) below a level of 1000 [1].

Program SOM-LA/TA (Seat Occupant - Light/Transport Aircraft) developed under3 the Federal Aviation Administration (FAA) sponsorship [2] incorporates a dynamic model
of the human body with a finite element model of the seat structure. It was used as an

I analytical tool in this paper for determination of the occupant response and the compliance
characteristics of the bulkhead in various crash environment. Correlated studies of analytical

I simulations with sled test results were accomplished . The tests, performed at the Civil
Aeromedical Institute (CAMI) [3], corresponded to an occupant head striking the aircraft
bulkhead or a panel behind which the occupant was seated. The tests were performed withN a part 572 HYBRID II anthropomorphic dummy. Modifications in SOM-LA/TA were

I



achieved to include an envelope for the occupant and the seat. It was observed that SOM-
LA/TA reasonably predicts the HIC for the triangular-shaped pulses, which is the pulse 3
required by the FAA. The cases needed to be further analyzed to obtain the dependency
of the results on displacement requirement and compliance characteristics of bulkheads. 3

A contact force model of the form: f

F = A(e"'3 - 1) + C2

was used, for which A and B were stiffness coefficients and C was the damping coefficient.
For different materials, based on both static and dynamic tests, these coefficients are

evaluated from experimental correlations. This model was used for the occupant head
contact with any envelope. The coefficients were varied in order to observe how the change
in these coefficients affect the HIC and maximum deformation of the front panel. A i
particular choice of the coefficients A, B, and C were obtained which matched the
experimental results from CAMI [3]. A parametric study of the coefficients in the contact 3
force model was then performed in order to obtain a correlation between HIC and
coefficients in the contact force model. A measure of optimal values for the bulkhead

compliances and displacement requirements was thus achieved in order to keep the
possibility of head injury as little as possible. This information could in turn be used in the
selection of suitable materials for the bulkhead or interior walls of a passenger aircraft. I

REFERENCES 3
[1] Department of Transportation, Federal Aviation Administration - Washington, D.C.,

"Part 25 Airworthiness Standards: Transport Category Airplanes, Federal Aviation I
Regulations", July, 1988.

[2] Lannane, D.H., Bolukbasi, A.O., and Coltman, J.W., "Computer Simulation of an
Aircraft Seat and Occupant in a Crash Environment, Volume I - Technical report, 3
TR-82401," Simula, Inc., Tempe, Arizona; DOT/FAA/CT-82/33-I, U.S. Department
of Transportation, Federal Aviation Administration Technical Center, Atlantic City

Airport, New Jersey, September 1982.

[3] Gowdy, V., DeWeese, R. "Evaluation of Head Impact Kinematics for Passengers 3
Seated Behind Interior Walls" Proceedings of the Third Annual Conference for
National Institute for Aviation Research, Wichita, Kansas, October, 1991. 3
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MODELLING OF VEHICLE CRASH TESTS

BY A MULTIBODY SYSTEM

J.P. MIZZI (INRETS*)

Our knowledge of vehicle behaviour and road safety systems during a crash-test is
based on experimental studies. A survey was involved on the modelling of a vehicle and
more precisely the front-compartment : the model should allow us to enlarge the
conclusions drawn from tests extending the results to different situations.

We designed a multibody model with adapted links simulating the behaviour of a
vehicle in different frontal crash configurations. Each body or link is formed of all the
elements that during the crash follow an identical deceleration law, that is to say all the
elements that are "rigidly linked together". They may represent several components of the
real structure. One of our first concerns was to make its computer-aid processing supple
and rapid both at the level of creation and execution considering the great variability of the
input data.The input informations necessary for dealing with the problem are the
geometric and kinematic data of the bodies and the links and the data concerning the
mechanical behaviour of the links.

The knowledge of the vehicle geometry, the initial kinematic conditions and the
type of crash-test allows us to make the decomposition into bodies and links and thus to
generate the corresponding multibody model (figure 1). Each body is considered as a
rigid solid characterized by its mass, its inertia tensor, its position and orientation and its
kinematics. We have used two types of links : geometric links allowing a relative
movement of a body compared with the other one and defined by their application point
and their mechanical types, and deformable links defined in their turn by the position data
of their application points between the different bodies of the model and their behaviour
laws.

Given the complexity of a simulation model, a tool was created taking into account
the specific problems of design of this type of application. In fact, we define, starting
from appropriate data acquisition masks, the geometric and kinematic characteristics of
the bodies and the geometric and mechanical characteristics of the links. This allows us to
create in conviviality the adequate data files for analysis of the simulation.

Usually, the methods used for the formation of equations governing the movement
of a complex system are based either on the use of general theorems or on the use of
techniques of analytical mechanics (Lagrange's and Hamilton's equations). Our idea is to
start from a method allowing us to draft these equations in a more synthetical form in

* Institut National de Recherche sur les Transports et leur S~curit6 - 109, avenue

Salvador Allende - Case 24 - 69675 Bron CPdex - France



I
order to leave most developments at the level of data processing. The motion of a body in
space is described by the group D of the displacements in affine space E. Because of its
differentiable properties, the group of displacements is a LIE group. Then we use these
properties for calculations. The final advantage of this type of method is that it allows a
totally intrinsic analytical calculation in the vectorial space of the torques.

Our objective is then to obtain for a given system the analytical equations governing
motion as a function of generalized coordinates and its movement for different initial
conditions. To this effect, we must put into place the whole explicit mathematical
formulation in order to design and achieve the directly programmable algorithms. A
supplementary tool was created to recover the file of equations on the motion established
by the software for generating equations and to allow the real calculation of the solutions
given by the formerly obtained equations. 3

The tools of simulation were created in the framework of the study on the collision
of a vehicle with an obstacle. However, although they take into account the specificities 3
of this case, they are sufficiently supple for allowing the interest in any multibody system
study, in particular the simulation of the occupant dynamics.
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INTERMITTENT MOTION ANALYSIS IN MULTIBODY DYNAMICS

USING JOINT COORDINATES AND CANONICAL EQUATIONS OF MOTION

Manuel S. Pereira

CEMUL, Technical University of Lisbon
Lisboa Codex, PORTUGAL

Parviz E. Nikravesh

Department of Aerospace and Mechanical Engineering
The University of Arizona

Tucson, AZ 85721

ABSTRACT

For mechanical systems that undergo intermittent motion, the usual formulation of

the equations of motion over the periods of discontinuity is not valid, and a

procedure for balancing the momenta is often performed. In this paper, a general

canonical form of the equations of motion for multibody systems, in terms of the

system relative joint coordinates, is used as the differential equations of motion.

These equations are valid for both open- and closed-loop systems. A set of

momentum balance-impulse equations are derived in terms of the system's total

momenta by explicitly integrating the canonical equations. With known values of

the joint coordinates and the momenta right before impact, and also for a given

coefficient of restitution, the momentum balance-impulse equations are solved for

the change in momenta. The total momenta and the velocities immediately after

impact are updated and then the integration of the equations of motion is resumed.

For a central-impact case, the change of velocities is considered in the normal

direction to the contact surface. However, for an oblique impact, the change of

velocities of the points of contact must be considered both in the normal and

tangential directions. Furthermore, the change in relative velocities in a tangential

direction would require the inclusion of a friction force between the contacting
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bodies. If adequate relationships between the tangential components of relative

velocities both before and after impact are not established, an increase in the I
kinetic energy of the system may be observed due to the assumptions used in 3
predicting the post-collision motion. This phenomenon, which has been pointed

out and discussed by other investigators, is thoroughly addressed in this paper. 3
This paper also presents several examples of open- and closed-loop

multibody systems. Impact analysis for these systems during collision is performed 3
and the results are compared against those obtained from previously developed

techniques. Due to the small number of momentum balance-impulse equations, the

numerical solution of these equations can be obtained efficiently. 3
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I On the Dynamics of Tethered Satellite Systems

Jbrg WAUER
Institut far Technische Mechanik, Universitdt Karlsruhe

KaiserstraBe 12, W-7500 Karlsruhe 1, Germany

Cable-connected satellites are interesting flexible multi-
body systems in the actual research of orbital space craft.
The most important question dealing with the dynamics of
such systems is the formulation of the governing equations
of motion. Since the choice of the coordinate system effects
the complexity of the equation set considerably, and this
complexity on the other hand influences the handling within
a numerical simulation procedure, the search for the
simplest structure of the equations of motion is of decisive
importance.

Here, in contrast to the usual propositions in the avail-I able literature in this field where inertial geocentric
frames and locally attached reference systems are used (see
/1/, for instance), a special floating reference frame
(called Bucken s frame /2/ and putted to the instantaneous
center of mass of the flexible multibody system) is applied
and compared with the mentioned other ones. The satellite
system is composed of two point-shaped rigid bodies (model-
ing the shuttle and the subsatellite) connected by a dis-
tributed parameter (torsional and bending rigid) tether with
finite axial stiffness. The system undergoes an orbital
overall motion, additional rigid body pendulum oscillations
and longitudinal tether vibrations. As well the generation
of the governing nonlinear boundary value problem of the
hybrid structure as the reduction to a system of ordinary
differential equations by Galerkin s method are discussed in
detail. A generalization to e more complicated system with
finite bending and torsional rigidities of the tether is
also dealt with. Finally, different stationary modes of
motion and the corresponding linearized stability equations
are briefly addressed. The numerical simulation is not
subject of consideration.

All obtained equation sets verify, that also the coordi-
nate system proposed here has several advantages and may be
an appropriate starting point studying dynamic problems of
tethered flexible satellites (with two endbodies). Parti-
cularly, in comparison with the structure of the equations
of motion based on a locally attached reference frame, some
simplificiations in the final expressions can be stated.

References
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NONLINEAR MOTION OF AN ARBITRARILY
SHAPED SATELLITE IN AN ELLIPTIC ORBIT •

INCLUDING THE EFFECTS OF DAMPING

A. Guran A. Vakakis
Dept. of Mechanical Engrg. Dept. of Mechanical Engrg.

University of Toronto University of Illinois
5 King's College Road Urbana-Champaign 3
Toronto, Ontario, 1206 West Green Street
Canada M5S 1A4 Urbana, Illinois 61801 USA

Abstract 3
For an arbitrarily shaped satellite in an orbit about a poin master, the equation of

motion is studied in [1]. Including damping to this system according to power law, one
has

d,---0 + d2 + 3K sin~cs = -OS i (Wf2 t2L") (1n

where 0 and ?p are the position angle and libration angle respectively. K is the inertia
moment ratio and -y is the coefficient of atmospheric damping. Using Kepler's equation n
(1) may be written as

(1 + e cos 0)" - 2e sin (0' + 1) + 3K = -'y(1 + e cos 0)2n-3(1'), (2) I
where ( )' is a derivative with respect to 0.

The time evolution of equation (2) is being studied. For a fixed damping -Y and inertia
moment ratio K the behaviour of motion changes as the orbit eccentricity e is varied.
As an appropriate set of parameters we choose K = 0.5 and Y = 0.05.

For small values of e the motion is periodic encircling the equilibrium point ¢ = 0,
=" - 0. With increasing e the periodic motion undergoes period doubling bifurcation at

e = 0.132. 3
In this paper, the planar motion of a satellite in an elliptic orbit is studied. Occurrence

of period doubling as the orbit eccentricity increases is observed.

[1] A. Guran. Chaotic Motion of an Arbitrarily Shaped Satellite in an Elliptic Orbit.
Developments in Mechanics, vol. 16, pp. 452-453, 1991.
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NONLINEAR DYNAMICS OF ARTICULATED CYLINDERS
SUBJECT TO CONFINED AXIAL FLOW

I M. P. PAIDOUSSIS and R. BOTEZ

Department of Mechanical Engineering, McGill University

3 817 Sherbrooke St. W., Montreal, Quebec, H3A 2K6, Canada

3 This study is concerned with an articulated system of rigid cylinders

interconnected by pins and rotational springs. The cylinders are

centrally located in a cylindrical duct and subjected to an external

axial flow. The upstream end of the system is pinned while the downstream

end is free. Although the formulation is generalized to any number of

degrees of freedom (articulations), this study is restricted to models

with two and three degrees of freedom. Furthermore, only planar motion

* is considered.

The equations of motion are derived by the Lagrangian method. The

fluid forces on each cylinder [1] are calculated by integrating the

hydrostatic as well as hydrodynamic forces acting on the cylinder. The

forces associated with the structure itself, i.e. the restoring, inertial

and gravity forces acting on the structure, are taken into account in the

kinetic and potential energies of the system. The hydrodynamic forces are

incorporated partly in the kinetic energy and partly as generalized

forces. In deriving the equations of motion, nonlinearities are introduced

3 by Taylor expanding the trigonometric functions of the state variables.

The characteristic frequencies are determined by transforming the

problem into an eigenvalue problem. As a control parameter (for example

the fluid velocity) is varied, the modal frequencies evolve in the complex-

frequency plane and, when the imaginary component of one of them crosses

the imaginary axis, a bifurcation to flutter or divergence occurs. Once

flutter develops, the amplitude grows with increasing flow velocity, until3 impacting with the outer flow-containing pipe occurs. This gives rise to a

strongly nonlinear force, which in this paper is modelled either as a3 cubic spring (for analytical convenience) or, more realistically, by a

trilinear spring model.3 Solutions of the equations were obtained by using a fourth-order Runge-

I
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Kutta integration algorithm, with a step size of 0.01. For the purpose of

checking the convergence of the solution, the Runge-Kutta-Fehlberg

algorithm was also used and same results were obtained. The results showed

that, as the flow is incremented, the Hopf bifurcation is followed by a I
cascade of period-doubling bifurcations leading to chaos.

In numerical simulation, the following values of nondimensional 3
parameters were used: mass 6-0.4, gravity y-10, length c-10, base Cb -0.1

and friction coefficient Cf-0.025. The simulations were conducted by

changing the drag coefficient (C - 0.2,0.63,1), the form coefficient (f -

0,0.2,0.4,0.6,0.8), as well as the number of degrees of freedom (n - 2,3). 1
For constant values of C and n, the critical velocities decrease with

increasing f. For constant values of C and f, the critical velocities

decrease with decreasing n. I
The dynamical behaviour is illustrated by phase portraits (Fig.l) and

bifurcation diagrams (Fig.2). The difference between the quasi-periodic 3
and chaotic behaviour of the system is examined and characterized by

employing the techniques of power spectra, Poincare maps and Lyapunov 3
exponents.

I
References

[1] Paidoussis, M.P. (1973). "Dynamics of Cylindrical Structures Subjected 3
to Axial Flow". Journal of Sound and Vibration, 29, pp. 365-385.

Fig.l: C-0.2, f-0.8, n-2, u-2.79 Fig.2: C-0.2, f-0.8, n-2 3
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WEAK AND STRONG INTERACTIONS IN VORTEX-INDUCED

RESONANT VIBRATIONS OF CYLINDRICAL STRUCTURES

C.W.S. To Q.S. Lu* Z.S. Jin**

Department of Mechanical Engineering
The University of Western Ontario

London, Ontario, Canada N6A 5B9

Abstract

Flow-induced vibrations of elastic structures are of great practical importance in
engineering designs. For bluff elastic structures, such as most of the civil engineering structures,
vortex shedding is the main fluid dynamic mechanism for exciting vibrations of the structures.
Any structure with a sufficiently bluff trailing edge sheds vortices in subsonic flows in a very
wide range of Reynolds number. Vortices are shedded alternately from each side of the structure
and then generate an oscillating pressure field on the structure. This oscillating pressure field is
the source of periodic forces which can cause the elastic structure to vibrate with a large
amplitude and thus may lead to destructive effects on the structure.

In order to make a theoretical analysis on vortex-induced vibrations, wake oscillator
models were proposed to predict the resonant response of the vortex-excited vibrations of circular
cylinders normal to the flow. In these models, the dynamic interaction between the structure and
the flow is described by nonlinear oscillator equations. The structure is modeled as a linear
oscillator, and the vortex wake is described as a nonlinear, self-excited oscillator coupled to the
structure. The model parameters can be determined by the properties of the fluid and the structure
as well as experimental data. Although they are not the models obtained directly from the
analysis of the fluid field and cannot give details about the fluid-structure interaction, the wake
oscillator models do predict many of the dynamic effects that have been observed experimentally.
For example, they are successfully used to estimate the maximum amplitude of response and
exhibit the frequency entrainment phenomenon when the vortex shedding frequency approaches
the natural frequency of the structure. However, in previous analyses of the wake oscillator
models, only the case of main inner-resonance was considered. Effects of the intensity of fluid-
structure interaction as well as the elastic nonlinearity of structures have not been investigated.
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This investigation thus treats vortex-induced resonant vibrations of cylindrical structures
with weak and strong fluid-structure interactions. Theoretical analyses for the subharmonic and
superharmonic inner-resonances in the case of strong interaction , as well as the main inner-
resonance in the case of weak interaction, are made by using the method of multiple scales. The
effect of nonlinear elasticity is considered. Both the theoretical and numerical results obtained
in the present investigation show that much more complicated dynamical phenomena, including
large amplitude subharmonic, superharmonic, quasiperiodic and chaotic vibrations, can take
place when the fluid-structure interaction is strong. Theoretical predictions are verified by
numerical integration results using the fourth-order Runge-Kutta algorithm. The maximum
amplitude of response in the case of weak interaction obtained by using the formula of this paper
is also in good agreement with the corresponding experimental and theoretical results available
in the literature.

It is concluded that the method of multiple scales gives excellent theoretical results of 3
subharmonic and superharmonic inner-resonances in the case of strong fluid-structure interaction,
and main inner resonances in the case of weak fluid-structure interaction. The method of multiple
scales with first order uniform expression of the solution , however, is not applicable to the 3
study of main inner-resonance for strong fluid-structure interaction.

I
I
I
I
I
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* Now, return to the Department of Applied Mathematics and Physics, Beijing University I
of Aeronautics and Astronautics, Beijing, China.

* On leave from the Department of Mechanics, Tianjin University, Tianjin, China. I
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AN EFFICIENT NUMERICAL TECHNIQUE FOR THE ANALYSIS
OF PARAMETRICALLY EXCITED NONLINEAR SYSTEMS

N.R. Senthilnathan and S.C. Sinha
Department of Mechanical Engineering,
Auburn University, Auburn, AL 36849

ABSTRACT

Nonlinear ordinary differential equations with periodic coefficients occur in many
practical applications like stability of structures under periodic loading or
boundary conditions, helicopter rotor dynamics in forward flight, dynamic analysis
of a satellite with an eccentricity in its orbit etc. Nonlinear periodic systems
generally exhibit rich dynamic behavior characterized by periodic, period
multiplication, and chaotic responses. Small changes in the parameter values or
the initial conditions could lead to entirely different types of dynamic behavior.
The computational scheme used for such dynamical systems should therefore be
able to predict the type of response accurately for small changes in the parameter
values or initial conditions.

Some of the popular numerical schemes for nonlinear initial value problems
include Runge-Kutta and Newmark methods. The accuracy of these methods are
known [1] to depend strongly on the step size. The choice of an optimal step size
could lead to significant computational time [2]. The use of weighted residual
methods (finite elements in time) leads [3] to a set of nonlinear algebraic
equations in the unknown variables, the solution of which is generally expensive.

A new computational scheme is proposed in the following which has many
attractive features over the ones mentioned above. This method is an extension of
the superefficient scheme proposed earlier [4], to nonlinear problems. It is
illustrated that the present technique is an efficient tool for computing periodic,
multi-periodic and chaotic solutions.

PROPOSED SCHEME: The object for the proposed scheme is a set of second-
order nonlinear ordinary differential equations with periodic coefficients given by

k(t) + [V+ V*(t)]'(t) + [Ur+ U*(t)]y(t) = F(y,t) (1)

with appropriate initial conditions y(0) and k(O) . y(t) is an nxl state vector,
F(y,t) is an nxl periodic vector of nonlinear elements of the state variables.
U (W) aad v (t) are periodic square matrices. U and V are constant square
matrices.

The computational scheme follows that of a Picard type iteration given by

ki.(t + [V+ t I(t)] 1 .+(t) + [U+ U'(t)1y 1.,(t) = F(y 1 ,t) (2)

i = 0,1,2, ....

The iteration is started with an initial guess of yO=. Equation (2) implies the
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method requires the solution of only a set of linear equations with periodic
coefficients in each iteration. The method proposed in reference [41 is adopted for
the solution of the set of linear equations (2). The periodic square matrices I
0'(t) and v'(t) and the known vector F(yi,t) are expanded in Chebyshev
polynomials with known coefficients and the state vector y,., is expanded in
Chebvshev polynomials with unknown coefficients B'i.1 in conjunction with the
integrations of equations (2). Convergence is guaranteed when the norm given by

Bl,.. - B1, •E is satisfied. e is the predetermined error constant. 3
NUMERICAL RESULTS AND CONCLUDING REMARKS: The computationai
scheme described above is applied to the nonlinear equation with periodic
coefficient given by

t:c)-2 cO ( t)._(W +pCosft)u(t)+aU2(t)+0~u1(t) -- o (3)i

The above equation was previously studied by Stupnicka et al [5] and was shown
to exhibit periodic, period doubling and chaotic responses for the following values
of the parameters

C=O.1, 6)0=1, P=0.9, (x=1.5, P=0.5, u(O)=O.02 and ý()0=0 (4) 3
for various exciting frequencies. They have used conventional numerical
integration (Runge-Kutta) to compute the various responses.

It is observed in figures 1 to 4 that the present method is as accurate as the
Runge-Kutta (R-K) method in obtaining periodic, period doubling and chaotic I
responses for small variations in the exciting frequency. The present method
requires about 6-8 term Chebyshev expansion in each period (2.r/0) of
integration for convergence in less than ten iterations in all the cases considered. I

In conclusion, it is interesting to note the following merits of the present
scheme over the conventional methods: l
1. The CPU time taken by the present method is about half of that taken by

the R-K method for a given response.
2. Since the present method requires only matrix inversion and multiplications, I

it enables parallel computations making it attractive for the analysis of large
scale systems.

3. Unlike the harmonic balance and the weighted residual methods, the present
approach does not require the solution of a set of nonlinear algebraic
equations.

4. Last but not the least, the proposed scheme does not require the equations
of motion to be rewritten in the state-space form.

ACKNOWLEDGEMENT: Financial support from ARO contract no. DAAL03-89- i
k-0172 monitored by Dr. Gary L. Anderson is gratefully acknowledged. I
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A Mesh Repartitioning Scheme to Cope with Nonlinearities Resulting
from Large and Fast Rotations of Deformable Bodies

Ara Arabyan and Tingyu Tsang
Department of Aerospace and Mechanical Engineering

University of Arizona
Tucson, AZ 85721

Abstract

It has been shown by various researchers that, for a deformable body undergoing large
and fast rotation, linear finite-element approaches will produce erroneous results if the nonlinear
coupling between the deformation and rigid-body coordinates are not accounted for properly in
the equations of motion. Furthermore, if the deformation of any given single finite element is such
that the usual geometric approximations cannot be made additional serious errors may result.
Conversely, when provisions are made in dynamic formulations to account for these nonlinear
effects, the computational cost becomes prohibitive because of the very large number of
additional terms involved. The scheme proposed in this paper relies on the observation that, for a
general deformable body, only some portions of the body undergo deformation which is strongly
coupled with large and high rates of rotation or which render geometric approximations invalid.
As a result, the dynamics of most of the body can be treated using linear finite elements, and
provisions have to be made to account for nonlinear effects for only some of the elements.
However, because the location and the number of such elements depend on the instantaneous
dynamics of the body and change over time as the body moves through space, it is impossible to
decide on an appropriate finite-element mesh for the body.

This paper describes a method whereby such elements are identified at selected time steps
and the finite-element mesh describing the deformation of the body is reconstituted appropriately
to account for nonlinearities due to the coupling between rigid and deformation coordinates and

I geometric nonlinearities due to large-angle deformations.

A very flexible beam undergoing large and fast rotation but small strain is used as an
example. The results of the approach are compared to standard finite-element results and fixed-
mesh results with nonlinear analysis. Computational loads and prospects for implementation on
parallel processors are also discussed.I

I
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RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS
WITH GEOMETRICAL NONLINEARITY UNDER RANDOM EXCITATIONS I

BY THE STOCHASTIC CENTRAL DIFFERENCE METHOD I
C.W.S. To*

Earthquake Engineering Research Center
University of California, Berkeley

1301 South 46th Street
Richmond, California 94804, U.S.A. I

Abstract

There are various simple direct integration schemes for random response of linear and1
nonlinear mechanical and structural systems in the literature. With linear or linearized multi-
degree-of-freedom (MDOF) systems the method of DiPaola and associates requires the classical
modal transformation, while that of Hoshiya and associates makes use of the white noise
characteristics of the autoregressive (AR) model in addition to the normal modal analysis. Both
methods are essentially of the Euler algorithm type and hence have much larger truncation errors
than that applying the stochastic central difference (SCD) method and various other stochastic
direct integration schemes developed by To. The SCD method is a simple and versatile numerical
integration algorithm that has proved to be very accurate and efficient for linear and nonlinear
MDOF systems under stationary and nonstationary random excitations.

In the present work the SCD method is extended to the determination of response 3
statistics of MDOF systems with geometrical nonlinearity. Examples are plate and shell
structures, represented as MDOF systems by the finite element method (FEM) or boundary
element method (BEM) , subjected to transversal and in-plane random forces. Results for a I
simple two degree-of-freedom (DOF) system under nonstationary random excitations are
compared with those obtained by another tested method employing Ito's calculus. A procedure
is also presented to circumvent the numerical instability occurred in stiff structures and systems i
with high natural frequencies. Thus, the proposed technique and its deterministic counterpart can
easily and efficiently be applied to response analysis of linear and nonlinear MDOF systems
involving wave propapation and impact. The proposed technique is also simple to use and I
accurate.

* On leave from the Department of Mechanical Engineering, The University of Western

Ontario, London, Ontario, Canada N6A 5B9.
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